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Preface

The purpose of this thesis is to construct an explicit equivalence of represen-
tations of the braid group Bn, arising on the one hand from the monodromy
of the Knizhnik-Zamolodchikov equations (KZ) and on the other hand from
an R-matrix of the extended quantum group Uq(sl2)[

√
K]. The equivalence

of these two representations is a most remarkable and suprising result, re-
lating two apparently different fields of mathematics. The general result,
concerning any semisimple Lie algebra, which connects the braid group rep-
resentation defined by the monodromy of KZ and the braid group represen-
tation induced by the quantum group of the associated Lie algebra, carries
the name Drinfeld-Kohno theorem. The theorem is proved by using topo-
logical algebra [Kas95]. We will not consider the proof in this thesis, but
rather give an explicit relation between these two representations in the case
of the (semi)simple Lie algebra sl2. Moreover, this method applies also to
other systems of linear partial differential equations whose solutions are of
similar form as solutions of KZ.

The above equivalence was first stated by Toshitake Kohno in 1986
[Koh87]. He gave a description of the monodromy representation of the
braid group arising from the KZ-equations in terms of quantum groups. In
1990 Vladimir Drinfeld [Dri90] established the relation between the mon-
odromy of KZ and the braid group representation defined by the universal
R-matrix of the associated quantum group in a more general framework.
Drinfeld accepted the prestigious Fields medal in 1990.

The Knizhnik-Zamolodchikov equations were introduced by Vadim G.
Knizhnik and Alexander B. Zamolodchikov in the early eighties [KZ84] as
the differential equations satisfied by certain correlation functions in con-
formal field theory. More precisely, the equations arose originally from the
Wess-Zumino-(Novikov)-Witten-model, which is a two dimensional nonlin-
ear sigma-model describing the propagation of strings on a group manifold,
that is, a Lie group. Since then the KZ-equations have found applications
in several areas of mathematics, among others the representation theory of
affine Lie algebras, quantum groups, braid groups, and also in topology of
hyperplane complements and the theory of knots and three-folds.

In this thesis we solve these equations for sl2 and study the monodromy
of the solutions. The theory of solutions of the KZ-equations generalises the
classical theory of the hypergeometric equation (HGE), and in low dimen-
sions the monodromy of the solutions is similar to the monodromy of HGE.
Hence we first present some of the classical theory of HGE. We also intro-
duce the so called “contour deformation“ method, which is a procedure to
compute monodromy of solutions of differential equations written in integral
form. With help of this method we compute also the monodromy of KZ
explicitly.

On the other hand, we introduce Hopf algebras and quantum groups,

1



and explain how R-matrices of quantum groups define representations of
the braid group Bn. Moreover, we construct an R-matrix for the extended
quantum group Uq(sl2)[

√
K], and show that it defines a representation of Bn

equivalent to the monodromy of KZ for the Lie algebra sl2.

The braid group Bn is a finitely generated group closely related to the
symmetric group Sn. It is a group intuitively easy to picture, consisting
of isotopy classes of braids with n strands. The group operation in Bn
is defined simply by placing two braids on top of each other. The relation
with the symmetric group is expressed by a surjective group homomorphism.
Indeed, every braid b ∈ Bn defines a unique permutation τ(b) ∈ Sn of the
set of its starting and end points. The map b 7→ τ(b) defines a surjective
homomorphism from Bn to Sn.

Figure 1: A braid with five strands

The KZ-equations define a connection on a trivial vector bundle E over
the complex manifold

Yn = {(z1, . . . , zn) ∈ Cn} \
⋃
i<j

{zi = zj}.

The solutions of KZ are to be considered as horizontal sections of this bundle.
The connection defined by KZ is flat, which implies that monodromy can be
defined as parallel transport along smooth paths on Yn, and also that in the
vicinity of any point (z1, . . . , zn) ∈ Yn there exists a basis of local solutions for
KZ. The fundamental group of Yn is isomorphic to a subgroup Pn of the braid
group Bn, called the pure braid group. It consists of braids which preserve
the order of their starting and end points; in other words it is the kernel
of the homomorphism b 7→ τ(b) from Bn to Sn. So the monodromy of KZ
defines a representation of Pn acting on the fibers of the vector bundle E. By
incorporating an action of Sn on E we will be able to obtain a representation
of the whole braid group Bn.

In the first chapter we recall some complex analysis needed for studying
the monodromy of linear differential equations. The most important tool for
us from complex analysis is analytic continuation of holomorphic functions.
We show that analytic continuation of solutions of linear ODE’s defines a
linear representation of the fundamental group of the domain where the
equation and its solutions are analytically defined, acting on the space of
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local solutions. This is called the monodromy of the ODE. The reader should
have some experience in the fundamentals of complex analysis, covering basic
analytic functions and the most common examples of multivalued functions,
such as the complex power function. Knowledge of the theory of linear ODE’s
will also be useful.

In the second chapter we present the classical theory of the hypergeomet-
ric equation, including solutions and monodromy. We present two methods
for solving the equation and computing its monodromy. The reason for this
is that the monodromy of HGE is easy to compute by simply continuing
analytically the power series solutions obtained from the Fröbenius method,
whereas in computing the monodromy of the KZ-equations we use another
method based on “contour deformation“. For that we introduce integral ex-
pressions of solutions of HGE, presented by Leonhard Euler in 1748 in his
book “Introduction to analysis of the infinite“, and compute their monodromy
by deforming and cutting up the paths of integration of each solution in a
suitable way. Chapter two is quite self contained, and the reader need not
to have previous experience on monodromy computations or the theory of
HGE.

In the third chapter we introduce the language of connections and vector
bundles on complex manifolds. We define Pfaffian systems, which are sys-
tems of linear partial differential equations defined analytically on a complex
manifold M. We show that KZ is an example of a Pfaffian system defined on
Yn. We also explain how a Pfaffian system defines a connection on a trivial
vector bundle over the manifold M, and show that if this connection is flat
then the system has local fundamental solutions and, moreover, monodromy
of the system is well defined. We define monodromy of this kind of Pfaffian
systems as a linear representation of the fundamental group of M acting on
fibers of the trivial vector bundle. For the reader it is useful to be familiar
with smooth manifolds and their tangent and cotangent bundles. However,
we recall the definitions of complex manifolds and holomorphic vector bun-
dles, in analogy with the theory of smooth manifolds found e.g. in [Lee97]
and [Lee03]. The reader might also want to take a look at [For91] for more
details on complex structures. Knowledge of the theory of connections on
vector bundles is not required, and we shall prove the used properties of
connections in detail.

In the fourth chapter we recall briefly the structure of the Lie algebra sl2,
the notion of bialgebras and Hopf algebras, and definition of the so called
quantum sl2, denoted by Uq(sl2), which is a q-deformation of the universal
enveloping algebra of sl2. We also recall the necessary representation theory
of sl2 and Uq(sl2), in the extent of irreducible highest weight representations
and semisimplicity. The reader need not to have background from the theory
of Lie algebras, representations or quantum groups, and we will at least state
with references the results needed. However, knowledge of linear algebra is
necessary, and we expect also that the reader is somewhat familiar with the
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concept of tensor products. For more details on Hopf algebras and quantum
groups one may consult e.g. [Kas95] or [Kyt11], and on the theory of Lie
algebras e.g. [Hum72] or [Kna04].

In the fifth chapter we first give the rigorous definition of the braid group
Bn and show that it is the fundamental group of the configuration space
Cn = Yn/Sn, which is the quotient space of the manifold Yn equipped with
the natural action of the symmetric group Sn. Furthermore, in the fifth
chapter we solve the KZ-equations in the case of sl2 and compute their
monodromy using the “contour deformation“ method. Our treatment of the
monodromy of the KZ-equations for sl2 can be generalised to any semisim-
ple Lie algebra following the same lines. The reason why we have chosen to
present the case of sl2 is that for sl2 the solutions of KZ are the simplest to
obtain, although even for that case they include all generalised hypergeomet-
ric functions studied in the last century. We will state some facts concerning
the solutions of KZ without proofs, referring to [EFK98]. In computing the
monodromy we use suitable non-intersecting families of loops which enable
us to compute the monodromy explicitly. For details relating these families
to general solutions of KZ in integral form we refer to [FW91].

In the sixth chapter we introduce more of the theory of quantum groups
and construct a representation of the braid group Bn from the extended
quantum group Uq(sl2)[

√
K]. We show that this representation is actually

equivalent to the monodromy representation of Bn arising from the mon-
odromy of solutions of KZ. Moreover, we obtain an explicit relation between
these two representations, in terms of matrix elements. In order to construct
a braid group representation from Uq(sl2)[

√
K] we introduce the Drinfeld

double construction, which is a Hopf algebra that as a vector space is a ten-
sor product of a Hopf algebra and a certain subspace of its algebraic dual.
We also introduce the quantum Borel algebra Hq2 ⊂ Uq(sl2)[

√
K] and find

that the Drinfeld double associated to this Hopf algebra produces as a quo-
tient structure the quantum group Uq(sl2)[

√
K]. We will state most of the

results concerning Hopf algebras and quantum groups without proofs, which
can be found in [Kas95] and [Kyt11].

Finally, in the last chapter we present the Drinfeld-Kohno theorem for
comparison to our results. It is formulated using the notion of topological
modules and formal power series in an indeterminate h. Hence the proof
of the Drinfeld-Kohno theorem is valid only for such h that are near one,
whereas our concrete method has only the restriction that the deformation
parameter q is not allowed to be a root of unity. Moreover, our method
produces an explicit relation between the monodromy of KZ(sl2) and the
R-matrix of Uq(sl2)[

√
K], based on the fact that solutions of KZ(sl2) can be

written in integral form. In particular, using the quantum R-matrix we are
able to compute also monodromy of other systems of linear partial differ-
ential equations whose solutions have similar integral expressions. Systems
of PDE’s of this kind arise for instance in the theory of Schramm-Loewner
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evolutions.
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1 Analytic continuation

We recall some complex analysis needed for studying monodromy of linear
ODE’s. For more details the reader may consult e.g. [Rud87] or [NP69]. The
most important tool for us is analytic continuation of holomorphic functions.
From the monodromy theorem we obtain the crucial result that analytic con-
tinuation of solutions of linear ODE’s with meromorphic coefficients defines
a linear representation of the fundamental group of the domain where the
equation and its solutions are analytically defined, acting on the space of
local solutions. Moreover, the unique analytic continuation of a solution is
again a solution, and continuations of two linearly independent solutions are
also linearly independent. This will be proved in section 2.3, where we con-
centrate on Fuchsian equations, our main interest being the hypergeometric
equation.

We denote the complex plane as usual by C. We call a piecewise smooth
map from the unit interval [0, 1] ⊂ R to the complex plane a path. By a
domain we mean a nonempty, open and connected subset of the complex
plane, or, more generally, the Riemann sphere C. A domain D ⊂ C is said
to be simply connected if the complement C \D is connected. Equivalently,
D is simply connected if its fundamental group is trivial.

We denote the space of holomorphic functions defined on a domain D by
Hol(D), and use the words holomorphic and analytic interchangeably. The
reader should have some experience in the fundamentals of complex analy-
sis, covering basics of analytic functions and the most common examples of
multivalued functions, such as the complex power function. Knowledge of
the theory of linear ODE’s will also be useful.

The following properties of analytic and meromorphic functions are worth-
while to recall. The proofs can be found in any book of basic complex anal-
ysis, for example in [NP69].

Theorem 1.1.
(i) Let f be analytic in B(z0, R), z0 ∈ C, R > 0. Then

f(z) =
∞∑
n=0

cn(z − z0)n, where

cn =
1

n!
f (n)(z0) =

1

2πi

∫
γ

f(w)

(w − z0)n+1
dw

and γ : [0, 1]→ B(z0, R) is a path t 7→ z0 + reit with 0 < r < R. The
series has a radius of convergence up to the nearest singularity of f.

(ii) If above f is analytic in the punctured disc B(z0, R) \ {z0}, then

f(z) =

∞∑
n=−∞

cn(z − z0)n,
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and the series converges in the punctured disc B(z0, R
′) \ {z0}, where

R′ ≥ R is the distance to the nearest singularity of f other than z0.

Notice in particular that the power series expansions are uniquely de-
termined by the coefficients in their domain of convergence. The power
series expansions of analytic and meromorphic functions are usually called
the Taylor and Laurent expansions, respectively.

Another important tool is the fact that analytic and meromorphic func-
tions cannot have accumulated zeros.

Proposition 1.2. Let f be meromorphic in the domain D. Then either
f is identically zero or the zeros of f are isolated. Moreover, the set of
singularities of f is a set of isolated points in D.

1.1 Continuation of analytic functions

Next we shall define rigorously the concept of continuation of analytic func-
tions along chains of open discs, and along paths covered by open discs.

Definition 1.3. A function element is an ordered pair (f,B), where B ⊂ C
is an open circular disc and f is holomorphic in B. Two function elements
(f1, B1), (f2, B2) are direct continuations of each other if B1 ∩ B2 6= ∅ and
f1 = f2 in B1 ∩B2.

Naturally, a given function element (f0, B0) can be thought of to be
continued along a chain of circular discs {B1, . . . , Bn} if there exists functions
f1, . . . , fn so that the function elements (fi, Bi) and (fi+1, Bi+1) are direct
continuations of each other for every i = 0, . . . , n−1. The function fn is said
to be the analytic continuation of f0 along the chain.

Proposition 1.4. Let (f,B) be a function element and suppose f has an
analytic continuation fn along the chain {B1, . . . , Bn}. Then fn is uniquely
determined.

Proof. If f1 and g1 are two analytic continuations of f to B1 then by defi-
nition f1 = f = g1 on B ∩B1. By proposition 1.2, since B ∩B1 is open and
connected, f1 = g1 on B1. The assertion follows by induction on the number
of terms of the chain.

Definition 1.5. Let γ : [0, 1] → C be a path. We say that a chain
{B1, . . . , Bn} of circular discs covers γ if there are numbers

0 = t0 < t1 < . . . < tn = 1

such that γ(0) is the center of B0, γ(1) is the center of Bn and

γ([ti, ti+1]) ⊂ Bi
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for every i = 0, . . . , n − 1. If a function element (f,B) can be continued
along the chain {B1, . . . , Bn} we say that the function fn is the analytic
continuation of f along the path γ.

It is important to notice that also analytic continuation along paths is
uniquely determined. The reader may consult [Rud87] for a detailed proof;
by proposition 1.4 one only needs to check that the value of the continuation
does not depend on the choice of the chain covering γ.

The concept of analytic continuation can be defined also for meromor-
phic functions. This is called meromorphic continuation, and the resulting
functions are naturally assumed to be meromorphic. Meromorphic continu-
ations are also unique, and similar results as presented in the next sections
hold also in the meromorphic case.

1.2 Existence of analytic continuation

Analytic continuations along arbitrary paths do not always exist, but if a
function f has an analytic continuation along a path γ, the continuation is
uniquely determined and independent of the choice of the path within the
same homotopy class. However, if we start from a fixed function element
(f,B) and are able to continue it analytically along every path in a domain
D, this might not produce an analytic function defined in the whole D. For
instance, this is the case in the next example, where multivalued functions
are analytically continued.

0

γ

1

B(1, 1
2 )

Figure 2: The loop γ(t) = e2πit

Example 1.6. Recall the complex logarithm

ln z := ln |z|+ i arg z + 2πin.

It is crucial that the complex logarithm is a multivalued function, that is,
different choices of n ∈ N = {1, 2, . . .} produce different branches of ln.
When the function ln z = ln |z| + i arg z + 2πin with a particular choice of
branch is analytically continued along the loop γ : [0, 1] → C, γ(t) = e2πit,
starting from B(1, 1

2), the resulting continuation is

ln |z|+ i arg z + 2πi(n+ 1).
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So the original function gets an increment of 2πi in the continuation. This
is nothing but a change of branch.

Similarly, the analytic continuation along γ of the power function

za := exp(a ln z) = exp(a(ln |z|+ i arg z + 2πin)),

which as well is multivalued, with a particular choice of branch gets a “phase
factor“ e2πia, whence the analytic continuation of za along γ is zae2πia.

Actually, both of the above functions can be analytically continued along
any path in the domain C \ {0}, but they are not well defined as analytic
functions on C \ {0}. This is because there is no continuous choice of branch
for the complex logarithm nor for the power function in the whole C \ {0};
see e.g. [Rud87].

Example 1.7. Since by theorem 1.1 an analytic function f can be repre-
sented as a power series

∞∑
n=0

cn(z − z0)n

around any point z0 ∈ C where it is analytic, with a radius of convergence
R up to the nearest singularity, analytic continuations of f exist along every
path in B(z0, R). By uniqueness these coincide with f.

Example 1.8. Consider the analytic continuation of a function of the form

f(z) = g(z)h(z),

where g and h are analytic functions in a disc B0. Clearly f is analytic.
Suppose f has an analytic continuation along a chain {B1, . . . , Bn} such
that h is analytic in an open set D ⊂ C,

n⋃
k=0

Bk ⊂ D,

and g has an analytic continuation gn along the same chain. Then the
analytic continuation of f along the chain {B1, . . . , Bn} is by uniqueness

fn(z) = gn(z)h(z).

In the above example it could happen that g would not have an analytic
continuation along the chain {B1, . . . , Bn}. An important special case when
g has an analytic continuation along “almost“ every path γ is the following,
concerning solutions of linear ODE’s. More details about ODE’s of the
second order will be explained in the next chapter.

Suppose g is an analytic solution of a linear ordinary differential equation
(ODE) having rational coefficients in its normal form, defined in a circular
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disc B0 ⊂ C. Let γ : [0, 1] → C be a loop starting from the center of B0,
avoiding all the singular points of the ODE. The reader can find the general
definition of singular points of ODE’s in [Dub07]. Under these assumptions
we have the following.

Proposition 1.9. The function g has an analytic continuation along γ.

Proof. By the theory of ODE’s each point γ(t) ∈ γ([0, 1]) has an open neigh-
bourhood Ut in which there exists a basis for the analytic solutions of the
ODE. Since γ([0, 1]) is compact the open cover {Ut}t∈[0,1] of γ([0, 1]) has a
finite subcover {Ut1 , . . . , Utn}, 0 ≤ t1 < · · · < tn ≤ 1.

Let {f (i)
1 , . . . , f

(i)
m }, i = 0, . . . , n, be a basis for the solutions of the ODE

in Uti , where we write U0 := B0. We may assume that f (0)
j = f

(n)
j for

i = 0, . . . ,m since γ is a loop. Let Mi ∈ Cm×m be the matrix associated to
the change of basis in the intersection Uti ∩ Uti+1, i = 0, . . . , n− 1, so that

f (i+1) = Mif
(i),

where we denote f (i) = (f
(i)
1 . . . f

(i)
m )T . Write

g = af (0) = (a1f
(0)
1 · · · anf (0)

n )T ,

where a = (a1 . . . an) ∈ Cm. Since 0 6= det(M0) = det(MT
0 ) the system

a = x(0)M0,

where x(0) = (x
(0)
1 . . . x

(0)
n ), has a unique solution x(0). In other words, there

exists x(0) ∈ Cm so that

g = af (0) = x(0)M0f
(0) = x(0)f (1)

in U0 ∩ Ut1 . Now x(0)f (1) is the analytic continuation of g to Ut1 . The same
procedure in each intersection Uti∩Uti+1, i = 0, . . . , n−1, yields the analytic
continuation

g̃ := x(n−1)f (n) = x(n−1)f (0)

of g along γ, where x(i) ∈ Cm is the unique solution of the equation

x(i−1) = x(i)Mi,

and x(−1) := a. Moreover, solving the equations we obtain an explicit ex-
pression for the analytic continuation of g along γ with respect to the chosen
bases {f (i)

1 , . . . , f
(i)
m }, namely

g̃ = a(M−1
n−1 · · ·M

−1
0 )f (0) = a(Mn−1 · · ·M0)−1f (0).

In particular, from the proof of the previous proposition we see that for
solutions of linear ODE’s with meromorphic coefficients the analytic contin-
uation along paths avoiding singularities is indeed unique.
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1.3 Homotopy invariance

Recall that two paths γ1, γ2 : [0, 1] → D on a domain D ⊂ C are called
(path)homotopic if there exists a continuous map h : [0, 1]× [0, 1]→ D such
that for every t ∈ [0, 1]

h(0, t) = γ1(t), h(1, t) = γ2(t), and
h(s, 0) = γ1(0) = γ2(0), h(s, 1) = γ1(1) = γ2(1) for all s ∈ [0, 1].

The map h is called a homotopy from γ1 to γ2. By a loop we mean a path
with the same initial and end point, which we call the base point of the
loop. Path homotopy is an equivalence relation in the set of loops with a
fixed base point. The equivalence classes of loops on D with a chosen base
point z0 ∈ D form the fundamental group π1(D, z0) of the domain D, where
the group operation is concatenation of representatives of the equivalence
classes. If γ is a path we denote the reverse path by ←−γ .
Remark. We will always read concatenation of paths from right to left, mean-
ing that the rightmost path is the first.

A useful observation is that for two homotopic paths the homotopy h can
be obtained using elementary deformations in small convex domains. For a
detailed proof the reader may consult [Sak10].

Definition 1.10. Let γ1, γ2 : [0, 1] → D be two paths. We say that γ1 is
obtained from γ2 by an elementary deformation if there exists a homotopy
h : [0, 1]× [0, 1]→ D, and 0 ≤ a < b ≤ 1, and a convex domain C ⊂ D such
that for every s ∈ [0, 1]

h(s, t) ∈ C for every t ∈ [a, b],

h(s, t) = γ1(t) = γ2(t) for every t ∈ [0, 1] \ [a, b].

Lemma 1.11. If γ, γ′ are two homotopic paths in a domain D then there
exists a sequence {γ1, . . . , γn} of paths in D such that γ = γ1, γ

′ = γn and for
i = 2, . . . , n the path γi is obtained from γi−1 by an elementary deformation.

Analytic continuation along paths depends only on the homotopy class.
This is the monodromy theorem which we state without a proof. The asser-
tion is quite intuitive but the proof somewhat technical. A detailed proof
can be found in [Rud87].

Theorem 1.12. Let D be a simply connected domain and (f,B) a function
element such that B ⊂ D and f can be analytically continued along every path
in D starting from the center of B. Then there exists an analytic function g
defined in D such that g|B = f.

In particular, we have the following.
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Corollary 1.13. Let (f,B) be a function element and γ1, γ2 two homotopic
paths starting from the center of B. Suppose f is analytic in the domain
enclosed by the two paths γ1 and γ2. If f has analytic continuations g1, g2

along γ1, γ2, respectively, then g1 = g2.

Proof. It is enough to show that the analytic continuation of f along the
path γ := γ1

←−γ2 equals f, which means that the analytic continuation along
a homotopically trivial loop is the same as along the constant path. By
lemma 1.11 there exists a chain of elementary deformations in arbitrarily
small convex sets from γ to the constant path, and the assertion follows from
example 1.7, theorem 1.12 and uniqueness of the analytic continuation.

1.4 Monodromy of linear ODE’s

In proposition 1.9 we showed that solutions of linear ODE’s having only
finitely many singular points always have analytic continuations along paths
which do not meet the singularities. Moreover, by the theory of ODE’s,
under certain conditions specified in the sequel, there exist local multivalued
solutions around non-singular points. We will denote by Sol(B(z0, r)) the
space of solutions of the ODE defined in the vicinity B(z0, r) of z0. Now the
following linear operator can be consistently defined.

Definition 1.14. Assume that z0 is a non-singular point of a linear ODE
and let γ : [0, 1] → C be a loop avoiding all the singular points of the ODE
such that γ(0) = γ(1) = z0. The monodromy operator along γ (based at z0)
is the linear map

Mγ ∈ Aut(Sol(B(z0, r)))

which associates to every solution f of the ODE the analytic continuation
of f along γ.

For a linear ODE the set Sol(B(z0, r)) is a complex vector space, and
thus with a choice of basis we can identify

Aut(Sol(B(z0, r))) ∼= GLn(C),

where n ∈ N is the order of the ODE. Then the monodromy operators form
a subgroup of GLn(C) called the monodromy group of the ODE, based at
z0. By corollary 1.13 it is a linear representation of the fundamental group
of the space of non-singular points of the ODE. Namely, for two loops γ, η
with the same base point, avoiding the singularities,

MγMη = Mγη.

Naturally, the inverse operator of Mγ is the operator M←−γ associated to the
reverse loop, and the unit operator M1 corresponds to the homotopy class
of the constant path.
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From the proof of proposition 1.9 it can also be seen that the monodromy
groups at different base points are conjugate to each other. In particular,
they are isomorphic, which implies that the choice of a base point does not
affect the structure of the group. This is to be expected, since the same
holds for the fundamental group of any connected domain. We will only
consider ODE’s whose set of non-singular points is connected, and denote
the fundamental group of a connected domain D with any base point by
π1(D).
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2 The hypergeometric equation

We compute the monodromy of the hypergeometric equation (HGE), which
is a second order linear ordinary differential equation of great importance.
The equation has two singularities in the complex plane, and third at infinity.
Hence the domain where HGE is analytically defined is C\{0, 1,∞}, and its
fundamental group has two generators, namely the homotopy classes of loops
around zero and one. In a way, HGE is the most general second order linear
ODE having three regular singularities on the Riemann sphere C. Namely,
any second order linear ODE with three regular singularities on C can be
converted into HGE by a suitable change of variables.

Solutions of HGE are long studied and relatively simple. We present two
methods for solving the equation and computing its monodromy. The reason
for this is that the monodromy of HGE is easy to compute by simply con-
tinuing analytically the power series solutions obtained from the Fröbenius
method, whereas in computing the monodromy of the KZ-equations later on
we will use another method based on “contour deformation“. For that we
in addition introduce integral expressions of solutions of HGE, presented by
Leonhard Euler in 1748 in his book “Introduction to analysis of the infinite“,
and compute their monodromy by deforming and cutting up the paths of
integration of each solution in a suitable way.

The purpose of this section is both to provide the first example of comput-
ing monodromy of linear ODE’s and to introduce useful methods in solving
the KZ-equations and computing their monodromy. It is crucial that solu-
tions of KZ can also be written in integral form, moreover very similar to the
Euler’s solutions of HGE. The reader is not expected to have background
from the theory of linear ODE’s although some previous experience will be
helpful.

2.1 Second order linear ODE’s

Consider first the standard form of a second order linear homogeneous ordi-
nary differential equation in one complex variable{

d2

dz2
+ p1(z)

d

dz
+ p2(z)

}
w(z) = 0, (1)

where w is the unknown function and p1 and p2 are given functions. The
analyticity of the solution of (1) is completely determined by the analyticity
of the coefficients p1 and p2. Suppose p1 and p2 are single-valued analytic
functions of z in a certain domain D ⊂ C, except for a finite number of
isolated points. Then the points in D can be classified into the following
categories.

Ordinary points of the equation (1) are such points z0 ∈ D that both p1

and p2 are analytic at z0 and its vicinity.
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Singular points of the equation (1) are such points z0 ∈ D that either
p1 or p2 is not analytic at z0. Singular points can further be classified into
regular and irregular singularities.

The singular point z0 ∈ D is a regular singularity if p1 has a pole of order
at most one and p2 has a pole of order at most two at z0. Otherwise z0 is
called an irregular singularity. An equation with all its singular points being
regular is called Fuchsian.

The existence and uniqueness of solutions of (1) with fixed initial con-
ditions around ordinary points is well known. The proof can be found in
[WG89].

Theorem 2.1. If p1 and p2 are single-valued and analytic in B(z0, r) for
some r > 0, the equation (1) has a unique solution w(z) in B(z0, r) satisfying
the initial conditions

w(z0) = c0, w′(z0) = c1,

where c0 and c1 are arbitrary constants. In particular, w(z) is single-valued
and analytic in B(z0, r).

The singular points of (1) may also be singular points of the solutions.
However, at regular singularities the solutions are of certain form. These
are called regular solutions. They are multivalued functions which can be
written as linear combinations of

w1(z) = (z − z0)ρ1
∞∑
n=0

cn(z − z0)n, (r1)

where c0 6= 0, or

w2(z) = αw1(z) ln(z − z0) + (z − z0)ρ2
∞∑
n=0

dn(z − z0)n, (r2)

where dn 6= 0, in the vicinity of a point z0. The coefficients ρ1, ρ2, cn, dn and
α are to be determined. Moreover, regular solutions for (1) exist around a
point z0 only if z0 is either ordinary or a regular singularity; see [WG89].

Theorem 2.2. The necessary and sufficient conditions for (1) to have two
regular linearly independent solutions in the vicinity B(z0, r) of its singular
point z0 are that

(z − z0)p1(z) and (z − z0)2p2(z)

are analytic in B(z0, r).

15



A convenient way of solving the equation (1) around regular singularities
is the Fröbenius method. Then the obtained solutions can be analytically
continued to all the ordinary points of (1). The procedure is standard; see
e.g. [WG89]. The idea is to use an ansatz

w(z) =

∞∑
n=0

cn(z − z0)ρ+n,

with a possible branch point or pole at the regular singularity z0. Differen-
tiating w term by term and substituting to (1), recurrence relations for the
coefficients are obtained. We present an example of this in the next section,
solving the hypergeometric equation.

The equation (1) can naturally be extended into the Riemann sphere C.
When considering the nature of the point ∞ we have to make the transfor-
mation of variables t = 1

z . Then the equation (1) becomes{
d2

dt2
+

(
2

t
− 1

t2
p1

(
1

t

))
d

dt
+

1

t4
p2

(
1

t

)}
u(t) = 0,

where u(t) = u(1
z ) = w(z).

2.2 Solutions of the hypergeometric equation

Next we will have a closer look at the hypergeometric equation (HGE). The
solution of HGE around zero can be written as the hypergeometric series
already introduced in 1655 by John Wallis in his book “Arithmetica Infin-
itorum“, and further investigated among others by Leonhard Euler, Carl
Friedrich Gauss, Ernst Kummer, Bernhard Riemann and Hermann Schwarz
during the eighteenth and nineteenth centuries. We shall first solve the equa-
tion using the Fröbenius method, and compute the monodromy of the power
series solutions.

The hypergeometric equation{
z(1− z) d

2

dz2
+ (c− (a+ b+ 1)z)

d

dz
− ab

}
w(z) = 0 (HGE)

of parameters a, b, c ∈ C, is the prototype of a Fuchsian equation with at
most three regular singularities, namely 0, 1, and∞. The singularities 0 and
1 can be easily found from the normal form of the equation{

d2

dz2
+
c− (a+ b+ 1)z

z(1− z)
d

dz
− ab

z(1− z)

}
w(z) = 0,

since the functions

p1(z) =
c− (a+ b+ 1)z

z(1− z)
and

p2(z) = − ab

z(1− z)
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are clearly meromorphic in C with possible poles at 0 and 1. Moreover, the
orders of the poles are at most one.

We use the Fröbenius method to solve the equation HGE around these
points. Consider first the neighbourhood of zero.

2.2.1 Solutions around 0

Let

w(z) =

∞∑
n=0

dnz
ρ+n,

where d0 6= 0. Differentiating w term by term and substituting to HGE we
obtain

w′(z) =
∞∑
n=0

dn(ρ+ n)zρ+n−1 and

w
′′
(z) =

∞∑
n=0

dn(ρ+ n)(ρ+ n− 1)zρ+n−2

and HGE becomes

0 = z(1− z)
∞∑
n=0

dn(ρ+ n)(ρ+ n− 1)zρ+n−2

+ (c− (a+ b+ 1)z)
∞∑
n=0

dn(ρ+ n)zρ+n−1 − ab
∞∑
n=0

dnz
ρ+n.

This reduces to

0 =
∞∑
n=0

dn(ρ+ n)(ρ+ n− 1 + c)zρ+n−1

−
∞∑
n=1

dn−1{(ρ+ n− 1)(ρ+ n− 2) + (a+ b+ 1)(ρ+ n− 1) + ab}zρ+n−1

= d0ρ(ρ− 1 + c)zρ−1 +

∞∑
n=1

{dn(ρ+ n)(ρ+ n− 1 + c)

− dn−1((ρ+ n− 1)(ρ+ n− 1 + a+ b) + ab)}zρ+n−1.

By uniqueness of the power series expansion of analytic functions (compare
with theorem 1.1) all the coefficients of different powers of z have to be
identically zero,{
d0ρ(ρ− 1 + c) = 0
dn(ρ+ n)(ρ+ n− 1 + c)− dn−1((ρ+ n− 1)(ρ+ n− 1 + a+ b) + ab) = 0.
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Vanishing of the coefficient of the lowest order term implies the indicial
equation

ρ(ρ− 1 + c) = 0

which determines the values of the exponent, ρ ∈ {0, 1− c}. Using the other
equation we obtain a recurrence relation for the coefficients dn, n > 0

dn =
(ρ+ n+ a− 1)(ρ+ n+ b− 1)

(ρ+ n)(ρ+ n+ c− 1)
dn−1,

for c /∈ {. . . ,−2,−1, 0}. If c is a nonpositive integer the recurrence relation
might not have a solution. Hence, suppose c /∈ {. . . ,−2,−1, 0}.

Choose ρ = 0. If a, b, c /∈ {. . . ,−2,−1, 0}, we find that when n→∞,

dn−1

dn
=

n(n− 1 + c)

(n− 1 + a)(n− 1 + b)
=

(1− 1+c
n )

(1− 1+a
n )(1− 1+b

n )
−→ 1.

Hence the radius of convergence of the series is 1, that is, w(z) =
∑∞

n=0 dnz
n

is analytic in the open disc B(0, 1). If a or b ∈ {. . . ,−2,−1}, the series
degenerates into a polynomial, which has infinite radius of convergence, and
if a or b = 0 then the solution corresponding to ρ = 0 is constant. The
function w is called the hypergeometric series and denoted by

F (a, b, c; z) :=
∞∑
n=0

(a)n(b)n
n!(c)n

zn, (2)

where (m)n := m(m+ 1) · · · (m+ n− 1) = Γ(m+n)
Γ(m) .

Choosing ρ = 1 − c we obtain the other solution in terms of the hyper-
geometric series,

wρ=1−c(z) = z1−cF (a− c+ 1, b− c+ 1, 2− c; z).

By proposition 1.9 the hypergeometric series can be analytically contin-
ued to the domain C\{1} as a multivalued function. The analytic continua-
tion is called the hypergeometric function, and denoted by the same symbol.
It can also be thought of as a multivalued function on C\{1,∞}, with the two
singularities 1 and ∞. In [WG89] it is shown that if a, b /∈ {. . . ,−2,−1, 0},
these two points are the branch points of F (a, b, c; z). Hence F (a, b, c; z) is a
single-valued analytic function in C \ [1,∞].

Remark. It is clear that if the difference of the roots of the indicial equation is
not an integer then the Fröbenius method produces two linearly independent
(multivalued) solutions {w1, w2} of HGE. These are obtained with different
choices of the exponent, that is, the root of the indicial equation. Moreover,
these solutions are regular solutions of the form (r1).

If the difference of the roots of the indicial equation happens to be an
integer then existence of two solutions of the form (r1) is not guaranteed.
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However, also in this case two linearly independent regular solutions are
obtained. One of them is of the form (r1) and the other of the form (r2).
The idea is to consider derivatives of the coefficients of the ansatz, which
implies arise of logarithms; for details the reader may consult [WG89].

Consider a solution of HGE of the form (r2),

w(z) = α ln(z − z0)(z − z0)ρ1
∞∑
n=0

cn(z − z0)n + (z − z0)ρ2
∞∑
n=0

dn(z − z0)n,

where dn 6= 0, ρ1, ρ2, cn, dn and α are complex numbers, in the vicinity of
a point z0. Because of the logarithm appearing in the expression, analytic
continuation of w around the singularity z0 yields also a linear increment
in the solution, whereas solutions of the form (r1) only get “phase factors“
(recall example 1.6).

We will only consider the generic case, that is when the difference of the
roots of the indicial equation is not an integer. This ensures that no linear
increments arise in analytic continuation of the solutions around singular-
ities, and in particular that the monodromy representation, which we will
compute in the next section, is diagonalizable.

2.2.2 Solutions around 1

The procedure is identical to the previous case. The Fröbenius solutions are
obtained using the ansatz

w(z) =
∞∑
n=0

dn(z − 1)ρ+n,

where d0 6= 0. The indicial equation turns out to be

ρ(ρ+ a+ b− c) = 0,

with the roots ρ1 = 0 and ρ2 = c−a−b. The analysis of linear independence
of the solutions is as above, the generic case being c− a− b /∈ Z. The radius
of convergence of the generic solutions is at least one.

2.2.3 Solutions around ∞

We make the transformation of variables t = 1
z . Then HGE becomes{

d2

dt2
+

1

t

(
2− ct− (a+ b+ 1)

t− 1

)
d

dt
+

ab

t2(1− t)

}
u(t) = 0, (HGE’)
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where u(t) = u(1
z ) = w(z). The functions

q1(t) =
1

t

(
2− ct− (a+ b+ 1)

t− 1

)
and

q2(t) =
ab

t2(1− t)

are meromorphic in C, and have possible poles at 0 of orders at most one
and two, respectively. So also the point ∞ is at most a regular singularity
of HGE.

The solutions for HGE are obtained by analysing the solutions of HGE’
around 0. The indicial equation has the roots ρ1 = a and ρ2 = b, and the
solution obtained by the Fröbenius method is of the form

w(z) =
∞∑
n=0

dnz
−(ρ+n),

where d0 6= 0. Again, the analysis of linear independence of the solutions is
as before, the generic case being a − b /∈ Z. The domain of convergence of
the generic solutions is at least C \B(0, 1).

2.3 Monodromy of the hypergeometric equation

In the sequel we assume that 1−c, c−a−b, a−b /∈ Z. This ensures that for the
different choices ρ1 and ρ2 of the exponent ρ we obtain linearly independent
solutions of the form

w(z) =
∞∑
n=0

cn(z − z0)ρ+n,

and that the recurrence relation for the coefficients has a unique solution.
Moreover, as we will see, the monodromy of HGE is diagonalizable in this
case.

Let {w(0)
1 , w

(0)
2 }, {w

(1)
1 , w

(1)
2 } and {w(∞)

1 , w
(∞)
2 } be the linear bases of

solutions of HGE obtained by the Fröbenius method around the points 0, 1
and ∞, respectively. We want to study what happens to the solutions when
they are continued analytically along closed loops in C \ {0, 1,∞}. We first
note that HGE is invariant under analytic continuation.

Proposition 2.3. Let z0 ∈ C \ A and let w be a solution of a Fuchsian
equation of type (1) in the disc B(z0, r), where A is the set of regular singular
points of the equation. Assume that w has an analytic continuation w̃ along
a path γ in C \A. Then w̃ is a solution of the equation in the domain where
it is defined.
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Proof. Define the function

G(z) :=

{
d2

dz2
+ p1(z)

d

dz
+ p2(z)

}
w(z)

which is meromorphic in B(z0, r). Since the poles of G are in A, it has a
meromorphic continuation G̃ along γ. Moreover, since G ≡ 0 in B(z0, r), we
have that also G̃ ≡ 0, by meromorphicity and proposition 1.2. But

G̃(z) =

{
d2

dz2
+ p1(z)

d

dz
+ p2(z)

}
w̃(z),

from which the assertion follows.

It can also similarly be shown that the analytic continuations of two
linearly independent solutions of a Fuchsian equation of type (1) are linearly
independent. Notice also that the above proof generalises to Fuchsian ODE’s
of any order.

In particular, the previous theorem holds for HGE. Moreover, we can
compute the analytic continuations of the bases {w(0)

1 , w
(0)
2 }, {w

(1)
1 , w

(1)
2 }

and {w(∞)
1 , w

(∞)
2 } around the points 0, 1 and ∞, respectively. Define the

loops
γ0, γ1, γ∞ : [0, 1]→ C

around the singularities as in the picture. Notice that the composed path
γ∞γ1γ0 is homotopic to the constant path. Notice also that by proposition
1.9 and theorem 1.12 monodromy is homotopy invariant, whence the paths
γ0, γ1, γ∞ need not necessarily lie in the domains of convergence of the cor-
responding power series solutions of HGE. In particular, the loop γ∞ in
the picture represents the homotopy class of a loop around the point ∞ in
C \B(0, 1).

γ0

0 1

γ1

γ∞

Figure 3: Loops representing elements of the fundamental group of the do-
main C \ {0, 1,∞}
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Using examples 1.6 and 1.8 we obtain the following.
1. The analytic continuations of

w
(0)
1 (z) :=

∞∑
n=0

(dn)
(0)
ρ=0z

n, w
(0)
2 (z) := z1−c

∞∑
n=0

(dn)
(0)
ρ=1−cz

n

around γ0 are

w̃
(0)
1 (z) = w

(0)
1 (z), w̃

(0)
2 (z) = e2πi(1−c)w

(0)
2 (z),

2. the analytic continuations of

w
(1)
1 (z) :=

∞∑
n=0

(dn)
(1)
ρ=0(z−1)n, w

(1)
2 (z) := (z−1)c−a−b

∞∑
n=0

(dn)
(1)
ρ=c−a−b(z−1)n

around γ1 are

w̃
(1)
1 (z) = w

(1)
1 (z), w̃

(1)
2 (z) = e2πi(c−a−b)w

(1)
2 (z),

3. and the analytic continuations of

w
(∞)
1 (z) := z−a

∞∑
n=0

(dn)(∞)
ρ=az

−n, w
(∞)
2 (z) := z−b

∞∑
n=0

(dn)
(∞)
ρ=bz

−n

around γ∞ are

w̃
(∞)
1 (z) = e2πiaw

(∞)
1 (z), w̃

(∞)
2 (z) = e2πibw

(∞)
2 (z).

To shorten the notation, define

A := eπia, B := eπib, C := eπic.

In this notation the eigenvalues of the monodromy operators M0,M1 and
M∞, corresponding to the loops γ0, γ1 and γ∞, are {1, C−2}, {1, A−2B−2C2}
and {A2, B2}, respectively. Notice that if 1− c, c− a− b, a− b /∈ Z then the
monodromy matrices are diagonalizable.

The fundamental group of C \ {0, 1} is the free group of two generators,
which are the homotopy classes of the loops γ0 and γ1. If we consider instead
the domain C \ {0, 1,∞}, it is easy to see that the fundamental group can
be presented by the generators [γ0] and [γ1], and the relation

[γ∞][γ1][γ0] = 1.

The monodromy group has the same relations, whence

M∞M1M0 = id ∈ Aut(Sol(U)),
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where U is a simply connected domain where the solutions are defined. This
information is sufficient for computing the monodromy of HGE exactly in the
generic case 1− c, c−a− b, a− b /∈ Z. Next we will compute the monodromy.

Choose the basis {w(∞)
1 , w

(∞)
2 } for the space of the solutions of HGE, in

which the operator M∞ is diagonal,

M∞ =

(
A2 0
0 B2

)
Write for j = 0, 1

Mj =

(
uj vj
wj xj

)
Since we know the eigenvalues of M0 and M1, we have the relations{

1 + C−2 = TrM0 = u0 + x0

1 +A−2B−2C2 = TrM1 = u1 + x1{
C−2 = detM0 = u0x0 − v0w0

A−2B−2C2 = detM1 = u1x1 − v1w1

From the relation M∞M1M0 = id we obtain
A2(u1u0 + v1w0) = 1
w1u0 + x1w0 = 0
u1v0 + v1x0 = 0
B2(w1v0 + x1x0) = 1

We have eight unknown complex constants uj , vj , wj , xj , j = 0, 1, and
eight relations between them. It turns out that the equations have a solution,
with respect to a scaling parameter λ ∈ R\{0}. The parameter λ depends on
the choice of basis for the local solutions Sol(U). It corresponds to mutual
normalisation of the two basis vectors around ∞.

The solution can be written as

M0 =
1

C2(A2 −B2)

(
(B2(A2 − 1− C2) + C2) (A2 − 1)(B2 − C2)λ−1

(B2 − 1)(C2 −A2)λ A2(1−B2 + C2)− C2

)
M1 =

1

A2 −B2

(
1−B2 + C2(1−A−2) (A−2 − 1)(B2 − C2)λ−1

(A2 − C2)(1−B−2)λ A2 − 1 + C2(B−2 − 1)

)
We have now computed the monodromy group of HGE in the basis where
M∞ is diagonal.

2.4 Integral representations of the hypergeometric function

Since for a, b /∈ {. . . ,−2,−1, 0} the radius of convergence of the hypergeo-
metric series is 1, applications of the series representation of the hypergeo-
metric function are quite limited. Luckily, the function has various integral
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representations, which are more useful. One of them is the Euler integral

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt. (3)

Making the change of variables w = zt, where z ∈ (0, 1), the integral (3)
can be written as

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ z

0
z1−cwb−1(z − w)c−b−1(1− w)−adw. (4)

Note that the integral is convergent at w = 0 only if Re(b− 1) > −1 and
at w = z only if Re(c− b− 1) > −1, which means that (4) is well defined for
Re(c) > Re(b) > 0. Moreover, convergence of the integral (3) requires also
that Re(−a) > −1, that is Re(a) < 1. These restrictions can however be
dropped, using another path of integration. We will prove this in the next
section.

For Re(a) < 1 and Re(c) > Re(b) > 0 the integral (3) is indeed a
representation of the hypergeometric function; by existence and uniqueness
of ODE’s one only needs to check that it satisfies HGE and that it tends to
1 as z → 0. The limit at zero is easy to check, since

lim
z→0

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt =

∫ 1

0
tb−1(1− t)c−b−1dt

= B(b, c− b) =
Γ(b)Γ(c− b)

Γ(b+ (c− b))
=

Γ(b)Γ(c− b)
Γ(c)

by properties of the beta function.
To see that the integral (3) is a solution of HGE, observe that{
z(1− z) d

2

dz2
+ (c− (a+ b+ 1)z)

d

dz
− ab

}
·
∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt

=

∫ 1

0

{
z(1− z) d

2

dz2
+ (c− (a+ b+ 1)z)

d

dz
− ab

}
·(tb−1(1− t)c−b−1(1− zt)−a)dt

=

∫ 1

0
a(1− t)c−b−1tb−1(1− tz)−2−a

·(b(tz − 1) + t(c+ (1 + a)(t− 1)z − ctz))dt

=

∫ 1

0

d

dt

(
−a(1− t)c−btb(1− tz)−1−a

)
dt

= (−a(1− t)c−btb(1− tz)−1−a)|t=1
− (−a(1− t)c−btb(1− tz)−1−a)|t=0

= 0.
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For a general procedure of integral solutions one may consult [WG89].

We will also need another integral solution of HGE, namely

F̃ (a, b, c; z) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

z
z1−cwb−1(z − w)c−b−1(1− w)−adw.

For this expression, the integral is convergent at w = z only if Re(a) < 1
and at w = 1 only if Re(c) > Re(b). These restrictions can also be dropped,
by similar reasoning as for F (a, b, c; z).

It can be shown that the functions F (a, b, c; z) and F̃ (a, b, c; z) are lin-
early independent for generic values of the parameters a, b, c ∈ C. The linear
independence of F and F̃ is considered later, since it follows from the mon-
odromy computation which is presented in the next section.

2.5 Monodromy of the hypergeometric equation revisited

In this section we denote the integrand of (4), which is a multivalued function
in the domain {(z, w) ∈ C2|z 6= 0, w 6= 0, w 6= 1, z 6= w}, by

ϕ(z, w) := z1−cwb−1(z − w)c−b−1(1− w)−a,

and the two solutions of HGE by

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ z

0
ϕ(z, w)dw

and

F̃ (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

z
ϕ̃(z, w)dw,

where the tilde in the latter expression reminds that the branches of ϕ and
ϕ̃ may be differently chosen. We shall compute the monodromy of these
functions using a “contour deformation“ method. The “phase factors“ are
obtained using the result of example 1.6 concerning the power function, and
we use the shorthand notation A = eπia, B = eπib, C = eπic.

Suppose first that a, b, c ∈ R. The branch of ϕ(z, w) is chosen to be such
that ϕ(z, w) > 0 when w ∈ [0, z]. The function ϕ̃(z, w) is obtained from
ϕ(z, w) by interchanging the points w ∈ [0, z] and z so that w moves below
z, and dividing the result by e−πi(c−b−1) in order to have ϕ̃(z, w) > 0 when
w ∈ [z, 1]. These choices of branches guarantee that the functions F (a, b, c; z)
and F̃ (a, b, c; z) are positive and real on the interval [0, 1].

Define the loops ω0, ω
±
z , ω1 : [0, 1]→ C \ {0, 1} by

ω0(s) := re2πis,

ωz(s)
± := z ± reπis,

ω1(s) := 1− re2πis,

where r > 0 is small and 0 < z < 1.
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Lemma 2.4. Suppose a, b, c ∈ C satisfy Re(c) > Re(b) > 0 and Re(a) < 1.
Then as r → 0 ∫

ω0

ϕ(z, w)dw → 0,∫
ω1

ϕ̃(z, w)dw → 0,∫
ω±z

ϕ(z, w)dw → 0.

Proof. When r is small enough, there exist bounded functions C0(r), Cz(r)
and C1(r) such that ∫

ω0

ϕ(z, w)dw ≤ 2πr |C0(r)| rb−1,∫
ω±z

ϕ(z, w)dw ≤ πr |Cz(r)| rc−b−1,∫
ω1

ϕ̃(z, w)dw ≤ 2πr |C1(r)| r−a.

Taking r → 0 the right hand sides tend to zero, since Re(c−b), Re(b) > 0
and Re(1− a) > 0.

Next we extend definition of the solutions F (a, b, c; z) and F̃ (a, b, c; z) to
“almost all“ values of the parameters a, b, c ∈ C.

Instead of the line segment [0, z] in the integral (4) take for path of
integration the Pochammer contour

γ := (τ (0)
ε )−1σ−1(τ (z)

ε )−1στ (0)
ε σ−1τ (z)

ε σ,

where 0 < ε << z < 1 and σ, τ (0)
ε , τz−ε : [0, 1]→ C are the paths

σ(s) := ε(1− s) + (z − ε)s,
τ (0)
ε (s) := εe2πis,

τ (z)
ε (s) := z − εe2πis.

∼0 z
0 z

Figure 4: The integration segment [0, z] corresponds to the Pochammer con-
tour γ.
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Replacing the segment [0, z] by the Pochammer contour γ the value of
the function F (a, b, c; z) does not change up to a multiplicative constant.
Namely, by lemma 2.4 the integrals over τ (0)

ε and τ (z)
ε vanish when ε → 0,

and it follows that

lim
ε→0

∫
γ
ϕ(z, w)dw

= (1− e2πi(c−b−1) + e2πi(c−b−1+b−1) − e2πi(b−1))F (a, b, c; z)

= (1−B−2)(C2 −B2)F (a, b, c; z) 6= 0

for b, c − b /∈ Z. Moreover, the value of the integral does not depend on ε.
Hence

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ z

0
ϕ(z, w)dw

=
1

(1−B−2)(C2 −B2)
lim
ε→0

∫
γ
ϕ(z, w)dw,

and by analytic continuation on the variables a, b, c ∈ C the function F (a, b, c; z)
is well defined for b, c − b /∈ Z. Similarly one can check that F̃ (a, b, c; z) is
well defined for a, c− b /∈ Z.

Consider now the effect of monodromy on the solutions F (a, b, c; z) and
F̃ (a, b, c; z) of HGE, with the choices of branches explained above.

Monodromy around 0. Let γ0 : [0, 1] → C \ {0, 1} be the path
γ0(s) := ze2πis. We compute the monodromy operator M0 in the basis
{F (a, b, c; z), F̃ (a, b, c; z)}. Later we will see that the solutions F (a, b, c; z)
and F̃ (a, b, c; z) of HGE are linearly independent, and indeed form a basis
for the solutions.

Since F (a, b, c; z) is analytic at zero

M0F (a, b, c; z) = F (a, b, c; z).

For F̃ (a, b, c; z), we cut the path of integration into small pieces where
the phase of the integrand remains constant. The effect ofM0 on the path of
integration [z, 1] is as in the following picture. The star indicates the point
where the branch of the integrand is chosen, before the action of γ0.
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10 z

+
0 z z0 0 z z 1

= + + +

Taking into account all the “phase factors“ the picture represents the
following function.

− e2πi(1−c)eπi(c−b−1)e2πi(b−1)

∫ z

r
ϕ(z, w)dw −

∫
ω0

ϕ(z, w)dw

+ e2πi(1−c)eπi(c−b−1)

∫ z−r

r
ϕ(z, w)dw −

∫
ω+
z

ϕ(z, w)dw

+ e2πi(1−c)
∫ 1

z+r
ϕ̃(z, w)dw

= C−1B

∫ z

r
ϕ(z, w)dw −

∫
ω0

ϕ(z, w)dw − C−1B−1

∫ z−r

r
ϕ(z, w)dw

−
∫
ω+
z

ϕ(z, w)dw + C−2

∫ 1

z+r
ϕ̃(z, w)dw

−→
r→0

C−1(B −B−1)F (a, b, c; z) + C−2F̃ (a, b, c; z) = M0F̃ (a, b, c; z).

Hence

M0 =

(
1 (B −B−1)C−1

0 C−2

)
Notice that if b /∈ Z, then F̃ (a, b, c; z) is not an eigenvector of M0. But
F (a, b, c; z) is always an eigenvector of M0, and all vectors that are linearly
dependent on F (a, b, c; z) are its scalar multiples. Hence we deduce that if
b /∈ Z, the integral solutions F (a, b, c; z) and F̃ (a, b, c; z) of HGE are linearly
independent.

Notice also that for c ∈ Z and b /∈ Z the matrixM0 is not diagonalizable,
and in fact then the above expression of M0 is in the Jordan normal form.
Recall that when c ∈ Z, one of the linearly independent solutions of HGE
contains logarithmic terms, whence it gets a linear increment in analytic con-
tinuation. This implies that the monodromy operator around the singularity
zero is not diagonalizable.

Monodromy around 1. Let γ1 : [0, 1] → C \ {0, 1} be the path
γ1(s) := 1 − (1 − z)e2πis. As above, we cut the path of integration into
small pieces where the phase of the integrand remains constant.
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For F (a, b, c; z), the effect of M1 on the path of integration [0, z] is as in
the following picture. The star indicates the point where the branch of the
integrand is chosen, before the action of γ1.

10 z

+
0 z z z 1 1 z 1

= + ++

Taking into account all the “phase factors“ the picture represents the
following function.∫ z−r

0
ϕ(z, w)dw +

∫
ω−z

ϕ(z, w)dw + eπi(c−b−1)

∫ 1−r

z+r
ϕ̃(z, w)dw

+

∫
ω1

ϕ̃(z, w)dw − eπi(c−b−1)e−2πia

∫ 1−r

z
ϕ̃(z, w)dw

=

∫ z−r

0
ϕ(z, w)dw +

∫
ω−z

ϕ(z, w)dw − CB−1

∫ 1−r

z+r
ϕ̃(z, w)dw

+

∫
ω1

ϕ̃(z, w)dw + CB−1A−2

∫ 1−r

z
ϕ̃(z, w)dw

−→
r→0

F (a, b, c; z) + CB−1(A−2 − 1)F̃ (a, b, c; z) = M1F (a, b, c; z).

For F̃ (a, b, c; z), the effect of M1 on the path of integration [z, 1] is the
following.

+=
z 1 z 1 1

The “phase factors“ yield

e2πi(c−b−1)e−2πia

∫ 1−r

z
ϕ̃(z, w)dw −

∫
ω1

ϕ̃(z, w)dw

= C2B−2A−2

∫ 1−r

z
ϕ̃(z, w)dw −

∫
ω1

ϕ̃(z, w)dw

−→
r→0

C2B−2A−2F̃ (a, b, c; z) = M1F̃ (a, b, c; z).

Hence

M1 =

(
1 0

(A−2 − 1)B−1C A−2B−2C2

)
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Notice that if a /∈ Z then F (a, b, c; z) is not an eigenvector of M1, and as
before, we deduce that if a /∈ Z, then the integral solutions F (a, b, c; z) and
F̃ (a, b, c; z) of HGE are linearly independent. Moreover, for c−b−a ∈ Z and
a /∈ Z the matrix M1 is not diagonalizable, and then the above expression of
M1 is in the lower diagonal Jordan normal form.

Monodromy around∞. The effect ofM∞ on the functions F (a, b, c; z)
and F̃ (a, b, c; z) can either be computed similarly as above, using a loop
around ∞, or using the relation

[γ∞][γ1][γ0] = 1

in the fundamental group of C \ {0, 1,∞}. The result is

M∞ =

(
A+B −AB A2BC−1(1−B2)
(A2 − 1)BC A2B2

)
Conclusion. We notice that the eigenvalues of the monodromy ma-

trices obtained using “contour deformation“ are the same as in section 2.3.
In fact, the monodromy matrices are exactly the same, which can be seen
by change of basis. In a basis such that M∞ is diagonal, the monodromy
matrices are

M0 =
1

C2(A2 −B2)

(
(B2(A2 − 1− C2) + C2) (A2 − 1)(B2 − C2)λ−1

(B2 − 1)(C2 −A2)λ A2(1−B2 + C2)− C2

)
M1 =

1

A2 −B2

(
1−B2 + C2(1−A−2) (A−2 − 1)(B2 − C2)λ−1

(A2 − C2)(1−B−2)λ A2 − 1 + C2(B−2 − 1)

)
M∞ =

(
A2 0
0 B2

)
where λ is a scaling parameter. For M∞ to be diagonalizable we need to
require that a− b /∈ Z.

Recall that we assumed the parameters a, b, c to be real valued. Since
the solutions F (a, b, c; z) and F̃ (a, b, c; z) of HGE are analytic functions in
each of the variables a, b, c ∈ C, analytic continuation in a, b and c yields well
defined solutions for a, b, a−b, b−c /∈ Z.Moreover, by example 1.7 the above
matrices represent the monodromy of the hypergeometric equation not only
for a, b, c ∈ R but also for a, b, a− b, b− c ∈ C \ Z. However, since Z is very
sparse in C, we deduce that the result is valid for “almost all“ a, b, c ∈ C.
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3 Connections and Pfaffian systems

In this section we introduce connections associated to Pfaffian systems, which
are systems of linear partial differential equations defined analytically on a
complex manifoldM. Usually the manifold is a domain in C, and the complex
structure is natural. A Pfaffian system defines a connection on a trivial vector
bundle overM. The hypergeometric equation is a Pfaffian system on the one
dimensional manifold C \ {0, 1}, and the KZ-equations provide a less trivial
example of a Pfaffian system.

The main results of this section are the following. Firstly, a Pfaffian sys-
tem which induces a flat connection over M always has local fundamental
solutions. Conversely, existence of a fundamental solution implies flatness of
the induced connection. Secondly, in this case a monodromy representation
associated to the equation can be consistently defined via parallel transport
of solutions along smooth paths. Namely, consistency of the monodromy
representation requires homotopy invariance of the parallel transport, which
is guaranteed for flat connections. In the one dimensional case parallel trans-
port is simply analytic continuation along paths, and the idea is to be able
to analytically continue solutions of systems in higher dimensions as well.

For the reader it is useful to be somewhat familiar with smooth manifolds
and their tangent and cotangent bundles. We recall the definitions of com-
plex manifolds and holomorphic vector bundles, in analogy with the theory
of smooth manifolds found e.g. in [Lee97] and [Lee03]. The reader might
also want to take a look at [For91] for more details on complex structures.
Knowledge of the theory of connections on vector bundles is not required,
and we shall prove the used properties of connections in detail. After the
background being covered, we will finally define monodromy of flat holomor-
phic vector bundles as a representation of the fundamental group acting on
the fibers of the bundle.

Definition of monodromy associated to vector bundles enables us to con-
sider monodromy of Pfaffian systems and especially of KZ. It turns out that
the system KZ has local fundamental solutions, and that it indeed induces a
flat connection over the complex manifold where it is defined, which further
guarantees that the monodromy of KZ is well defined. This allows us to even
speak of computing the monodromy of solutions of KZ.

3.1 Complex manifolds

Recall that a topological n-manifold M is a topological Hausdorff space whose
topology has a countable basis, such that M is locally homeomorphic to Rn.
An atlas on M is a collection {Ui, xi}i∈I of charts, where {Ui} is an open
cover of M and for every i ∈ I the map

xi = (x1
i , . . . , x

n
i ) : Ui → xi(Ui)
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is a homeomorphism into an open subset xi(Ui) ⊂ Rn.
If M admits a smooth structure, that is, if whenever Ui ∩ Uj 6= ∅, the

transition maps

(xi ◦ x−1
j )|xj(Ui∩Uj) : xj(Ui ∩ Uj)→ xi(Ui ∩ Uj)

are C∞-diffeomorphisms in Rn, we say that M is a smooth manifold. Holo-
morphic manifolds with a complex structure can be defined in a similar
manner.

Definition 3.1. A complex (holomorphic) n-manifold M is a topological
Hausdorff space whose topology has a countable basis, such thatM is locally
homeomorphic to Cn. Notice that as a real manifold M has dimension 2n.

A complex (holomorphic) atlas on M is a collection {Ui, zi}i∈I of charts,
where {Ui} is an open cover of M and for every i ∈ I the map

zi = (z1
i , . . . , z

n
i ) : Ui → zi(Ui)

is a homeomorphism into an open subset zi(Ui) ⊂ Cn, such that the following
compatibility condition holds:
whenever Ui ∩ Uj 6= ∅, the component functions of the transition maps

(zi ◦ z−1
j )|zj(Ui∩Uj) : zj(Ui ∩ Uj)→ zi(Ui ∩ Uj)

are holomorphic.

Ui
Uj

zi(Ui)

zj(Uj)

z−1
j

M

Cn

zj(Ui ∩ Uj)

zi

Figure 5: Two intersecting charts
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We call a map f : M → N between two complex manifolds holomorphic
if the corresponding functions

w ◦ f ◦ z−1 : z(U)→ w(f(U)),

where (U, z) is a chart on M such that f(U) ⊂ V, and (V,w) is a chart on
N, has holomorphic component functions.

f(U)

U V N

Cn

w

w(f(U))

M

Cm

w ◦ f ◦ z−1

z−1

f

The tangent and cotangent spaces (TpM,T ∗pM), as well as holomorphic
differential forms can be defined analogously to the smooth case. The reader
may find the detailed theory of smooth manifolds in [Lee03], and the basics
of complex manifolds in [For91].

3.2 Integrable Pfaffian systems

Next we will define Pfaffian systems on complex manifolds and study the
existence of solutions for them. We also provide some examples of how these
equations look like.

Consider the system of first order homogeneous linear partial differential
equations

∂

∂zi
φk(z

1, . . . , zm) =

n∑
j=1

f(i)kj(z
1, . . . , zm)φj(z

1, . . . , zm), (5)

where i = 1, . . . ,m, k = 1, . . . , n, and

φ = (φ1, . . . , φn) : U → Cn

is a unknown function defined on an open subset U ⊂ M of a complex
m−manifold M,

z = (z1, . . . , zm) : U → Cm

33



being the chart function on U. The coefficients f(i)kj : U → C are holomor-
phic functions.

The equation (5) consists of m differential equations, which can be writ-
ten in matrix form as follows. Define for each i = 1, . . . ,m the n×n-matrix-
valued function A(i) = (a(i)kj)j,k=1,...,n by

a(i)kj := f(i)kj(z
1, . . . , zm).

Then (5) reads

∂

∂zi
φ(z1, . . . , zm) = A(i)φ(z1, . . . , zm).

Notice that the operators ( ∂
∂zi

)p form a natural basis of the tangent space
TpM of M at any point p ∈ U, and the differentials (dzi)p a natural basis
of the cotangent space T ∗pM. Recall also that one-forms on M are precisely
the elements of the cotangent bundle T ∗M. Holomorphic one-forms can be
written as

f(z1, . . . , zm)dz =

m∑
k=1

fk(z
1, . . . , zm)dzk,

where fk : U → C are holomorphic.

Example 3.2. Let ci, i = 1, . . . , n, be complex valued functions. Let

M = C \ {w1, . . . , wk},

where {w1, . . . , wk} are the zeros of cn.
The manifold M is naturally equipped with the complex structure in-

herited from C, z being the chart function. Hence we may consider the
equation

cn(z)f (n)(z) + cn−1(z)f (n−1)(z) + · · ·+ c1(z)f ′(z) + c0(z)f(z) = 0,

where f : M → C is a unknown analytic function and f (i) is the i:th deriva-
tive of f. This is nothing but a linear ODE of n :th order.

To reduce this to equation (5) one can make the following change of
variables. Define

fi(z) = f (i−1)(z),

i = 1, . . . , n, where we denote f (0) = f. Then we obtain a linear system of
first order ODE’s{

d
dzfi = fi+1, i = 1, . . . , n− 1
d
dzfn = − 1

cn(z)(c0(z)f1(z) + c1(z)f2(z) + · · ·+ cn−1(z)fn(z)).

In matrix form, this is
d

dz
F (z) = A(z)F (z),
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where F (z) = (f1(z) · · · fn(z))T and A(z) is the matrix

A(z) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
...

− c0(z)
cn(z) − c1(z)

cn(z) − c2(z)
cn(z) · · · − cn−1(z)

cn(z)


Example 3.3. Let V = V1 ⊗ · · · ⊗ VN , where Vi, i = 1, . . . , N, are linear
finite dimensional complex representations of a semisimple Lie algebra g. Let

M = {(z1, . . . , zN ) ∈ CN} \
⋃
i<j

{zi = zj}

be a complex manifold and φ : M → V a unknown function defined on M
taking values in the vector space V. Let also Ω ∈ g⊗ g be an element whose
representation is an operator acting on Vi⊗Vj for any i, j ∈ {1, . . . , N}, and
let κ ∈ C. By Ωij we mean the operator Ω acting on the i:th and j:th tensor
component of V. The parameter κ and the operator Ω depend on the Lie
algebra g; for a precise definition see chapter 5.

The Knizhnik-Zamolodchikov equations

∂

∂zi
φ(z1, . . . , zN ) =

1

κ

∑
j 6=i

Ωij

zi − zj
φ(z1, . . . , zN ), (KZ)

i = 1, . . . , N, arise from the Wess-Zumino-(Novikov)-Witten-model of con-
formal field theory, where they describe the conformal blocks of the model.

We observe that the KZ-equations are of form (5) but the unknown func-
tion φ takes values in the vector space V instead of Cn. However, choosing
a suitable basis we see that V is isomorphic to Cdim(V ). The matrices asso-
ciated to the system KZ are n× n -matrices involving the operators Ωij ,

A(i) =
1

κ

∑
j 6=i

Ωij

zi − zj
.

We denote the set of holomorphic k-forms defined on an open subset U
of a complex manifold M by Ωk(U). The wedge product of forms connects
a k-form α and an l-form β, resulting a (k + l)-form α ∧ β. It is defined as
follows. If X1, . . . , Xk+l are holomorphic vector fields on U, let

α ∧ β(X1, . . . , Xk+l)

:=
1

k!l!

∑
σ∈Sk+l

sgn(σ)α(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . , Xσ(k+l)),

where Sk+l is the symmetric group.
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Recall that in smooth, or complex, manifolds, there exists an exterior
differentiation d connecting smooth, or holomorphic, n-forms to (n + 1)-
forms. The exterior differentiation satisfies the following properties, which
are proved for the smooth case in [Lee03].

Theorem 3.4. Let M be a complex manifold and U ⊂ M open. For every
integer k ≥ 0 there exists a unique C-linear operator

d = dkU : Ωk(U)→ Ωk+1(U)

such that

(i) d is a ∧-antiderivation, that is, for every α ∈ Ωk(U), β ∈ Ωl(U) it
satisfies

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ;

(ii) for k = 0 the operator d = d0
U is the complex differential

d : Hol(U)→ Ω1(U), f 7→ df ;

(iii) d2 = d ◦ d = 0

(iv) if V ⊂ U ⊂M are open and α ∈ Ωk(U), then d(α|V ) = (dα)|V .

Using a matrix of one-forms the linear system (5) can be written in a
more compact form.

Lemma 3.5. The linear system (5) can on any open U ⊂ M be written in
the form

dφ(z1, . . . , zm) = Λφ(z1, . . . , zm), (PFA)

where Λ is a matrix Pfaffian one-form, that is a n× n-matrix whose entries
are holomorphic one-forms on U.

Proof. Write the differential of φk, k = 1, . . . , n, in the natural basis of one-
forms

dφk(z
1, . . . , zm) =

m∑
i=1

∂

∂zi
φk(z

1, . . . , zm)dzi.

By (5) this can be written as
m∑
i=1

n∑
j=1

f(i)kj(z
1, . . . , zm)φj(z

1, . . . , zm)dzi.

The assertion follows defining the matrix Λ := (λkj)k,j=1,...,n by

λkj :=
m∑
i=1

f(i)kj(z
1, . . . , zm)dzi.
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Next we study under which conditions Pfaffian systems have local solu-
tions. The main result is that a local basis of solutions exists if and only if
the Pfaffian matrix satisfies a condition which is called integrability.

Definition 3.6. The system PFA are said to be integrable, if the matrix Λ
satisfies the integrability condition

dΛ = Λ ∧ Λ. (INT)

In terms of matrix elements, this reads

dλij = (Λ ∧ Λ)ij =
n∑
k=1

λik ∧ λkj , i, j = 1, . . . , n.

It is shown in lemma 3.9 that the integrability condition is necessary for
the existence of a local fundamental solution of the system PFA. From the
Fröbenius theorem it follows that this is also sufficient; see theorem 3.10.

Definition 3.7. Any n pointwise linearly independent solutions

φ(j) = (φ
(j)
1 , . . . , φ(j)

n ) : U → Cn,

j = 1, . . . , n, of the equation (5), defined on an open subset U of M, form
a fundamental system of solutions of (5). In particular they form a basis
for the vector space of the local solutions of (5). Written as columns of the
matrix

X = (xij)i,j=1,...,n,

where xij := φ
(j)
i , they form a fundamental solution for the system PFA.

Notice that since X is pointwise invertible, it is a map X : U → GLn(C).

Lemma 3.8. The fundamental solution X satisfies the system PFA in matrix
form, that is

dX = ΛX,

where the differentiation is for each matrix component separately.

Proof. If Λ = (λij)i,j=1,...,n, X = (xij)i,j=1,...,n are n×n-matrices, their prod-
uct is ΛX = (

∑n
k=1 λikxkj)i,j=1,...,n. Hence

dX = ΛX ⇐⇒ dxij =

n∑
k=1

λikxkj for all i, j = 1, . . . , n.

By the choice of the matrix elements xij , this is equivalent to

dφ
(j)
i =

n∑
k=1

aikφ
(j)
k for all i, j = 1, . . . , n.
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But every function φ(j) = (φ
(j)
1 , . . . , φ

(j)
n ), j = 1, . . . , n, satisfies the system

PFA, whence for every j = 1, . . . , n,

dφ(j)(z1, . . . , zn) = Λφ(j)(z1, . . . , zn)

⇐⇒ dφ
(j)
i =

n∑
k=1

λikφ
(j)
k for all i, j = 1, . . . , n.

Lemma 3.9. Suppose there exists a fundamental solution X of the system
PFA. Then the matrix Λ satisfies the integrability condition INT.

Proof. We first notice that X is pointwise invertible, and

0 = dIn×n = d(X−1X) = (dX−1)X +X−1dX,

where In×n ∈ GLn(C) is the constant function whose value is the unit matrix.
By lemma 3.8 this implies

dX−1 = −X−1(dX)X−1 = −X−1(ΛX)X−1 = −X−1Λ.

Hence
Λ = −XdX−1,

and differentiating Λ, using theorem 3.4 and lemma 3.8 we obtain

dΛ = −dX ∧ dX−1 − (−1)0X ∧ d2X−1 = −dX ∧ dX−1.

This is equivalent to

dλij =
n∑

k,l,m=1

λikxkl ∧ ylmλmj =
n∑

k,l,m=1

(xklylm)λik ∧ λmj

=
n∑

k,m=1

(XX−1)klλik ∧ λmj =
n∑

k,m=1

δkmλik ∧ λmj

=

n∑
k=1

λik ∧ λmj = (Λ ∧ Λ)ij ,

where (yij)i,j=1,...,n = X−1.

After the previous lemma the following important result follows from the
Fröbenius theorem, which is proved in detail in [AF02]. We only state the
following and refer to [AF02] for the proof, which is beyond the scope of this
thesis.

Theorem 3.10. A fundamental solution of the system PFA exists if and
only if the matrix Λ satisfies the integrability condition INT.

38



Proof. Necessity follows from lemma 3.9, and sufficiency from the Fröbenius
theorem. A detailed proof can be found in [AF02].

Notice that the fundamental solution X : U → GLn(C) is not necessarily
a global solution for the system PFA. If the manifold M is not simply
connected there might not exist a global single-valued solution for PFA.
However, the integrability condition guarantees existence of local solutions
defined on an open subset U of M.

3.3 Holomorphic vector bundles

Another tool needed for studying monodromy of Pfaffian systems is the con-
cept of holomorphic vector bundles on complex manifolds, and connections
on these bundles. Pfaffian systems define connections on trivial vector bun-
dles, and solutions of the systems can be thought of as horizontal sections.

A complex vector bundle of rank n over a topological manifold M is a
topological manifold which is built from “cylinders“ Ui × Cn, where Ui is
a chart on M. The structure added to M is the linear structure along the
fibers {p}×Cn, p ∈M. Using trivial vector bundles and connections one can
define another formulation for the integrability condition INT.

Let M and E be topological spaces, and π : E → M a continuous map.
Suppose every fiber π−1(p), p ∈ M, has the structure of an n-dimensional
vector space over C.

Definition 3.11. The pair (E, π) is a complex vector bundle of rank n over
M if for every p ∈M there exists an open neighbourhood Up of p in M and
a homeomorphism (a local trivialisation)

hp : π−1Up → Up × Cn

so that the following conditions hold.

(i) hp is fiber-preserving, that is the diagram

π−1Up Up × Cnhp

π

Up

prUp

commutes, where prUp : Up×Cn → Up is projection on the first compo-
nent,

(ii) for every x ∈ Up the map

hp|π−1(x) : π−1(x)→ {x} × Cn
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is an isomorphism of vector spaces.

If {Ui}i∈I is an open cover of M and hi : π−1Ui → Ui × Cn are local
trivialisations, then the family {π−1Ui, hi}i∈I is called an atlas of E. A vector
bundle is trivial if it admits a global atlas, that is a global trivialisation
h : E →M × Cn.

Definition 3.12. Let U ⊂M be open. A section of E over U is a continuous
map s : U → E such that

π ◦ s = idU .

Notice that a section s can be defined either locally on an open subset U of
M, or globally on the whole space M.

If hi : π−1Ui → Ui×Cn is a local trivialisation of E then one can associate
to the section s a unique continuous function

si : Ui ∩ U → Cn such that
hi(s(x)) = (x, si(x))

for every x ∈ Ui ∩ U. The function si is called a representation of s with
respect to the local trivialisation hi.

Definition 3.13. A local frame on an open subset U of M is a n-tuple
{e1, . . . , en} of sections such that for every x ∈ U the set {e1(x), . . . , en(x)}
is a basis of π−1(x). If one may choose U = M there exists a global frame
on M.

Definition 3.14. The vector bundle E over a complex manifold M is holo-
morphic if π : E →M and the transition functions associated to an atlas of
E are holomorphic.

A section is said to be holomorphic if its representation with respect to
every local trivialisation is holomorphic. We denote the space of holomorphic
sections defined on an open subset U of M by Γ(U,E). When U = M, we
have the space of global holomorphic sections Γ(M,E). Notice that when
considering sections defined only locally we interpret the bundle E over M
to be restricted to a bundle π−1(U) over U.

Examples of complex vector bundles are the tangent and cotangent bun-
dles TM and T ∗M of a complex manifold M. The sections of the tangent
bundle are called vector fields, and the sections of the cotangent bundle cov-
ector fields. Coordinate vector fields form a basis of the space of holomorphic
vector fields. Similarly, differential one-forms form a basis of the space of
holomorphic covector fields. Proofs and examples of these facts can be found
in [Lee97].
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Recall that the n:th exterior power of a vector space V is defined as the
subspace of V spanned by elements of the form v1 ∧ · · · ∧ vn,

∧nV = span{v1 ∧ · · · ∧ vn : vi ∈ V, i = 1, . . . , n}.

The elements of ∧nV are called multivectors. A differential k-form on M
can be thought of as a holomorphic section of the k:th exterior power of the
cotangent bundle T ∗M of M.

If M is a complex manifold and (E, π) a holomorphic vector bundle of
rank n over M, sections of the tensor product bundle

E ⊗ ∧kT ∗M

are called E-valued differential k-forms on M. The structure of the tensor
product bundle is natural, and the fibers

π−1(p)⊗ ∧kT ∗pM

are tensor products of the fibers π−1(p) of E and the fibers ∧kT ∗pM of the
extrerior power bundle

∧kT ∗M = tp∈M ∧k T ∗pM.

We denote the set of E-valued holomorphic differential k-forms defined
on an open subset U of M by Ωk(U,E).

Definition 3.15. Let M be a complex manifold and (E, π) a holomorphic
vector bundle of rank n over M. A connection on E is a C-linear map

∇ : Γ(M,E)→ Ω1(M,E)

such that for any section s ∈ Γ(M,E) and any f ∈ Hol(M)

∇(fs) = (df)s+ f(∇s).

Usually, the bundle E is the trivial bundleM×Cn, whence the E-valued
differential forms are differential forms on M taking values in Cn. If n = 1,
these are the ordinary differential forms on M.

Remark. The connection can be interpreted as a map

∇ : V ect(M)× Γ(M,E)→ Γ(M,E),

defined by the formula

∇(X, s) = ∇Xs := (∇s)(X),

where X 7→ ∇X is Hol(M)-linear, and V ect(M) is the space of smooth,
or holomorphic, vector fields on M. Above the E-valued one-form ∇s is
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evaluated on the vector field X, resulting a section (∇s)(X). Notice that by
definition the connection satisfies

∇X(fs) = (Xf)s+ f(∇Xs)

for every f ∈ Hol(M), X ∈ V ect(M) and s ∈ Γ(M,E).

Let {e1, . . . , en} be a local frame on U ⊂ M. Any section s ∈ Γ(U,E)
defined on U can be written in π−1(U) as

s =
n∑
i=1

fiei,

where fi ∈ Hol(U), i = 1, . . . , n, are holomorphic functions. A very useful
fact is that the value of the connection depends only the values of the vector
field X ∈ V ect(M) and the section s ∈ Γ(M,E) locally.

Proposition 3.16. Let p ∈ M, X ∈ V ect(M) and s ∈ Γ(M,E). The value
of ∇Xs ∈ Γ(M,E) at p depends only on Xp ∈ TpM and the values of s along
a smooth path γ : [0, 1]→M such that γ′(0) = Xp.

Proof. Let (U, z) be a chart on M, z : M → CN , such that p ∈ U, and
let {∂1 . . . , ∂N} be the corresponding coordinate vector fields. Let also
{e1, . . . , en} be a local frame on U. Write

X =

N∑
j=1

xj∂j , s =

n∑
i=1

fiei,

where xj , fi ∈ Hol(U). Then

(∇Xs)p =

n∑
i=1

(∇X(fiei))p =

n∑
i=1

((Xpfi)ei(p) + fi(p)(∇Xei)p)

=

n∑
i=1

(Xpfi)ei(p) +

N∑
j=1

fi(p)xj(p)(∇∂jei)p


where fi(p)xj(p) depend only on Xp ∈ TpM and s(p) ∈ E, and Xpfi depend
only on the values of s along a smooth path γ : [0, 1] → M such that
γ′(0) = Xp.

Remark. By proposition 3.16 the definition of a connection as a mapping
∇ : Γ(M,E) → Ω1(M,E) makes sense also for every open subset U of M,
meaning that∇ can be defined on U as a linear map∇ : Γ(U,E)→ Ω1(U,E).

Lemma 3.17. Any connection ∇ on E can be locally written as

∇ = d− Λ : Γ(U,E)→ Ω1(U,E),

where U ⊂M is open, d is the exterior differentiation and Λ is a n×n-matrix
of E-valued differential one-forms on U.
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Proof. Let {e1, . . . , en} be a local frame on U ⊂ M and write a section in
the frame as s =

∑n
i=1 fiei ∈ Γ(U,E). Write

∇ei :=
n∑
j=1

Γjiej ,

where Γji ∈ Ω1(U). By definition, the connection ∇ satisfies

∇s = ∇(
n∑
i=1

fiei) =
n∑
i=1

∇(fiei) =
n∑
i=1

((dfi)ei + fi(∇ei))

=

n∑
i=1

((dfi)ei + fi

n∑
j=1

Γjiej) =

n∑
j=1

(dfj +

n∑
i=1

fiΓ
j
i )ej .

The assertion follows defining Λ := (λji) = (−Γji )j,i=1,...,n.

Definition 3.18. A section s ∈ Γ(M,E) is horizontal for the connection ∇
if

∇s = 0.

In particular, horizontal sections solve locally the equation

ds = Λs.

Remark. In the case E = M ×Cn this is the system PFA, and if we take the
trivial bundle E = M ×W⊗n, the KZ-equations with V1 = · · · = VN =: W
are of this form. In particular, solutions of KZ are horizontal sections with
respect to the connection defined by the system KZ. The explicit form of
this connection is considered in the next section.

Connections can also be naturally extended to linear maps connecting E-
valued holomorphic differential forms on M. We interpret 0-forms as func-
tions and write Ω0(M) = Hol(M), and E-valued 0-forms as sections and
write Ω0(M,E) = Γ(M,E). We have

Ωk(M,E) ∼= Ωk(M)⊗ Γ(M,E)

as modules over Hol(M). Hence, we may identify these spaces. For every
k ≥ 0, define ∇ : Ωk(M,E)→ Ωk+1(M,E) by

∇(ϕ⊗ s) := dϕ⊗ s+∇s ∧ ϕ,

where ϕ ∈ Ωk(M), s ∈ Γ(M,E).
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3.4 Flat connections

Next we introduce conditions under which local horizontal sections exist for
a connection defined by a Pfaffian system. This corresponds to finding local
solutions of the system. We will need a notion of curvature of connections.
The scalar curvature associated to the affine connection on the tangent bun-
dle of a manifold illustrates in a way the shape of the manifold; for a sphere
the scalar curvature is positive, and a prototype of a manifold with negative
scalar curvature is the hyperboloid. Connections of manifolds with zero cur-
vature are called flat. It turns out that flat connections always have local
horizontal sections.

Consider the system PFA. The matrix Λ of one-forms defines a connec-
tion

∇(Λ) := d− Λ

on the trivial vector bundle E = M × Cn of rank n over M. By definition,
local solutions of PFA are the horizontal sections for the connection ∇(Λ).
The integrability condition INT can be written in terms of connections.

Recall that for a smooth, or holomorphic, manifold M, the curvature
tensor field

R : V ect(M)× V ect(M)× V ect(M)→ V ect(M)

associated to an affine connection ∇ (that is a connection defined on the
tangent bundle TM) is defined by the formula

R(X,Y )Z := (∇X∇Y −∇Y∇X −∇[X,Y ])Z,

where [·, ·] is the Lie bracket on V ect(M) and the connection is interpreted
as a map

∇ : V ect(M)× V ect(M)→ V ect(M),

defined by the formula

∇(X,Z) = ∇XZ := (∇Z)(X),

where the one-form ∇Z is evaluated on the vector field X, resulting a vector
field. The manifold is said to be flat if the curvature tensor field is identically
zero. This motivates the following definition.

Definition 3.19. LetM be a complex manifold, (E, π) a holomorphic vector
bundle of rank n over M and ∇ a connection on E. The multilinear map

R : V ect(M)× V ect(M)× Γ(M,E)→ Γ(M,E)

defined by the formula

R(X,Y )s := (∇X∇Y −∇Y∇X −∇[X,Y ])s
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is called the curvature of the connection. Linearity of the right hand side
over Hol(M) in the first two arguments and over C in the third argument
can be shown by a direct computation.

The map R can be thought of as a linear map

R : Γ(M,E)→ Ω2(M,E)

and extended in a similar manner as ∇ to a linear map

R : Ωk(M,E)→ Ωk+2(M,E), k ≥ 0.

Definition 3.20. The connection ∇ is a flat if its curvature is identically
zero.

Actually, there is a more convenient definition for the flatness of con-
nections. First we note a simple observation, which can be proved using the
properties of the exterior differentiation. The proof of the following property
is found in [Lee03].

Lemma 3.21. If ϕ ∈ Ω1(M), X, Y ∈ V ect(M) then

dϕ(X,Y ) = X(ϕ(Y ))− Y (ϕ(X))− ϕ([X,Y ]).

In the next lemma we identify the isomorphicHol(M)-modules Ωk(M,E)
and Ωk(M)⊗ Γ(M,E).

Lemma 3.22. Let ω = ϕ⊗ s ∈ Ω1(M,E), where ϕ ∈ Ω1(M), s ∈ Γ(M,E).
Then for all holomorphic vector fields X,Y ∈ V ect(M)

∇ω(X,Y ) = ∇X(ω(Y ))−∇Y (ω(X))− ω([X,Y ]).

Proof.

∇ω(X,Y ) = ∇(ϕ⊗ s)(X,Y ) = (dϕ⊗ s+∇s ∧ ϕ)(X,Y )

= (X(ϕ(Y ))− Y (ϕ(X))− ϕ([X,Y ]))⊗ s
+ ((∇s)(X))ϕ(Y )− ((∇s)(Y ))ϕ(X)

= ((d(ϕ(Y )))X − (d(ϕ(X)))Y − ϕ([X,Y ]))⊗ s
+ ((∇s)(X))ϕ(Y )− ((∇s)(Y ))ϕ(X)

= (d(ϕ(Y ))⊗ s+ ϕ(Y )(∇s))(X)

− (d(ϕ(X))⊗ s+ ϕ(X)(∇s))(Y )− ϕ([X,Y ])⊗ s
= (∇(ϕ(Y )⊗ s))(X)− (∇(ϕ(X)⊗ s))(Y )− ω([X,Y ])

= ∇X(ω(Y ))−∇Y (ω(X))− ω([X,Y ]),

where we used the definition of the wedge product of one-forms

α ∧ β(X,Y ) = α(X)β(Y )− α(Y )β(X),
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and the definition of the differential acting on vector fields

(dX)Y = Y X.

Proposition 3.23. For any section s ∈ Γ(M,E)

(∇ ◦∇)s = R(s).

Proof. Substitute ω = ∇s in lemma 3.22 to obtain

∇(∇s)(X,Y ) = ∇X(∇s(Y ))−∇Y (∇s(X))−∇s([X,Y ])

= ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s = R(X,Y )s.

Hence a connection ∇ is flat if and only if ∇◦∇ = 0. This enables us to
prove the following important result.

Theorem 3.24. Let M ba a complex m-manifold and Λ = (λij)i,j=1,...,n a
matrix of one-forms onM. Then the system PFA associated to Λ is integrable
if and only if the connection ∇(Λ) is flat.

Proof. Let {e1, . . . , en} be a local frame on U ⊂ M. Let s ∈ Γ(U,M × Cn),
and write s =

∑n
i=1 fiei. By lemma 3.17

∇(Λ)s =

n∑
j=1

(dfj −
n∑
i=1

fiλji)ej .

By properties of the exterior differentiation

∇(Λ) ◦ ∇(Λ)s = d

 n∑
j=1

dfj −
n∑

i,j=1

fiλji

 ej −
n∑

j,k=1

λjk ∧

(
dfk −

n∑
i=1

fiλki

)
ej

=

n∑
j=1

d2fj −
n∑
i=1

((dλji)fi − λji ∧ dfi)−
λ∑
k=1

λjk ∧ dfk +

n∑
i,k=1

λjk ∧ fiλki

 ej

=−
n∑

i,j=1

(dλij)fiej +
n∑
j=1

(
n∑
i=1

λji ∧ dfi −
n∑
k=1

(λjk ∧ dfk)

)
ej

+
n∑

i,j,k=1

λjk ∧ λkifiej

=− (dΛ)s+

n∑
k=1

(
λik ∧ dsk − λik ∧ dsk

)
+ (Λ ∧ Λ)s

=− (dΛ− Λ ∧ Λ)s

and the assertion follows from proposition 3.23.
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Thus the question of existence of local fundamental solutions of PFA can
be considered as the question of flatness of the connection associated to PFA.
Also, finding a linearly independent set of local solutions reduces to finding a
basis of the space of local horizontal sections associated to the trivial bundle
over M.

Example 3.25. If m = 1, the integrability condition dΛ = Λ ∧ Λ is trivial.
Namely, there are no nonzero two-forms on a one-dimensional manifold, and
dΛ and Λ ∧ Λ would be matrices of two-forms.

In example 3.2 the manifold was M = C \ {w1, . . . , wk}, and the funda-
mental solution always exists. Remember also the existence and uniqueness
theorem for linear ODE’s.

Example 3.26. The hypergeometric equation HGE is of the Pfaffian form.
The manifold under consideration is M = C\{0, 1}, and the Pfaffian matrix
can be written as

Λ(z) =

(
0 dz

−p2(z)dz −p1(z)dz

)
where

p1(z) =
c− (a+ b+ 1)z

z(1− z)
and

p2(z) = − ab

z(1− z)
.

Also in this case the underlying manifold is one-dimensional, and the exis-
tence of local solutions guaranteed.

Example 3.27. The KZ-equations of example 3.3 can be written in the
form suggested by lemma 3.5

dφ(z1, . . . , zN ) =
1

κ

∑
i

∑
j 6=i

Ωij

zi − zj
φ(z1, . . . , zN )dzi (KZ’)

with the Pfaffian n× n-matrix

Λ =
1

κ

∑
i

∑
j 6=i

Ωij

zi − zj
dzi.

A more convenient way to write Λ is

Λ =
1

κ

∑
1≤i<j≤N

Ωij

zi − zj
(dzi − dzj).

It can be shown that the connection defined by Λ is flat, but the com-
putation is a bit tedious, and can be found in [Kas95]. Hence there exists a
local fundamental solution of the KZ-equations.
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3.5 Monodromy by parallel transport

Another advantage of flat connections is that the parallel transport of sec-
tions along paths is independent of the choice of the path within the same
homotopy class. Hence by parallel transport we obtain a well defined mon-
odromy representation, acting on the fibers of the bundle. Let in this section
M be a complex manifold, (E, π) a holomorphic vector bundle of rank n over
M and ∇ a connection on E.

Definition 3.28. If γ : [0, 1] → M is a smooth path on M, we say that a
holomorphic map ρ : [0, 1] → E, interpreted so that ρ extends to a holo-
morphic function in the vicinity of [0, 1], is a holomorphic section along γ
if π ◦ ρ = γ. By definition, any section s ∈ Γ(M,E) can be restricted to a
holomorphic section ρ = s ◦ γ along γ, since

π ◦ ρ = π ◦ s ◦ γ = idM ◦ γ = γ.

However, not every section ρ along γ is induced by a section s ∈ Γ(M,E).
If ρ is induced by s ∈ Γ(M,E), that is ρ = s ◦ γ, then we call ρ extendible.

Definition 3.29. A section s ∈ Γ(M,E) is said to be parallel if

∇Xs = 0

for all X ∈ V ect(M).

Now that we have defined the notion of sections along smooth paths, we
would like to define a directional derivative for sections. This is actually the
original motivation of defining connections, namely to be able to differentiate
sections along smooth paths. The following result, which enables differen-
tiation along paths, is proved in [Lee97] for affine connections on smooth
manifolds. The general case is proved similarly.

Proposition 3.30. For each smooth path γ : [0, 1] → M the connection ∇
determines a unique C-linear operator Dt acting on the space of holomorphic
sections along γ satisfying the following properties.

(i) For every f ∈ Hol([0, 1]), interpreted so that f extends to a holomor-
phic function in the vicinity of [0, 1], and every holomorphic section
ρ : [0, 1]→ E along γ the operator Dt satisfies the product rule

Dt(fρ) = f ′ρ+ fDtρ.

(ii) If ρ is extendible, then for any s ∈ Γ(M,E) such that s ◦ γ = ρ

Dtρ = ∇γ′s.
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The operator Dt is called the covariant derivative along γ. We can now
define parallel sections along paths. Notice that by the property (ii) of the
covariant derivative the following definition is consistent with the previous
definition of parallel sections.

Definition 3.31. Let γ : [0, 1]→M be a smooth path onM. A holomorphic
section ρ : [0, 1]→ E along γ is said to be parallel along γ if

Dtρ = 0

for every t ∈ [0, 1].

From the existence and uniqueness theorem for linear ODE’s we obtain
the following result. The proof, again for affine connections on smooth man-
ifolds, is found in [Lee97].

Theorem 3.32. Let γ : [0, 1] → M be a smooth path and s0 ∈ π−1(γ(0)).
Then there exists a unique holomorphic parallel section ρ : [0, 1] → E along
γ such that ρ(0) = s0. The parallel section ρ is called the parallel translation
of s0 along γ with respect to the connection ∇.

Before proving the main result, we state a useful lemma proved in detail
in [Mee05].

Lemma 3.33. The connection ∇ is flat if and only if every p ∈ M has an
open neighbourhood on which there exists a local parallel frame {e1, . . . , en},
that is, a local frame satisfying

∇Xej = 0

for all X ∈ V ect(M), j = 1, . . . , n.

Proof. The sufficiency is easy. Namely, if {e1, . . . , en} is a local parallel frame
then one can write any s ∈ Γ(M,E) as

s =
n∑
j=1

fjej

and compute for any vector fields X,Y ∈ V ect(M) locally

R(X,Y )s = (∇X∇Y −∇Y∇X −∇[X,Y ])

n∑
j=1

fjej

=
n∑
j=1

(∇X((Y fj)ej + fj∇Y ej)−∇Y ((Xfj)ej + fj∇Xej)

− (([X,Y ]fj)ej + fj∇[X,Y ]ej))

=
n∑
j=1

(((XY fj)ej + (Y fj)∇Xej)− ((Y Xfj)ej + (Xfj)∇Y ej)− ([X,Y ]fj)ej)

=

n∑
j=1

((XY − Y X − [X,Y ])fj)ej = 0
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by definition of the commutator of vector fields. To prove the necessity,
assuming that ∇ is flat one can construct a local parallel frame. For the
construction the reader may consult [Mee05].

From this we get the following result, which enables us to define mon-
odromy in language of flat connections.

Theorem 3.34. Parallel transport along smooth paths depends only on the
homotopy class if and only if ∇ is flat.

Proof. Suppose first that ∇ is flat. As in the proof of corollary 1.13 it suffices
to show that parallel transport along a homotopically trivial loop is the same
as along a constant path. So, let γ be a homotopically trivial loop. By the
previous lemma there exists a local parallel frame {e1, . . . , en} around γ(t)
for each t ∈ [0, 1], and by compactness, there is a finite open cover {Ui}ni=1

of γ such that on every Ui there exists a local parallel frame. Now the
proof is similar to the proof of corollary 1.13, making use of elementary
deformations in the sets Ui on the manifold M, resulting that the parallel
transport ρ : [0, 1]→ E along γ satisfies ρ(0) = ρ(1).

On the other hand, suppose parallel transport depends only on the ho-
motopy class. Let p ∈ M. We will show that there exists a local parallel
frame {e1, . . . , en} on an open neighbourhood U of p. Then the assertion
follows from the previous lemma.

Let U be an open simply connected subset of M (which means that the
fundamental group of U is trivial) such that p ∈ U, and let {e1(p), . . . , en(p)}
be a basis of π−1(p). For any p′ ∈ U, denote by ei(p′) the end point of the
parallel transport of ei(p) along an arbitrary smooth path γ : [0, 1] → U
such that γ(0) = p, γ(1) = p′. Since parallel transport depends only on
the homotopy class and U is simply connected, the value of ei(p′) does not
depend on the choice of the path γ. Moreover, since {e1(p), . . . , en(p)} are
linearly independent, also {e1(p′), . . . , en(p′)} are linearly independent. It
remains to show that ∇Xej = 0 for all X ∈ V ect(M), j = 1, . . . , n.

For that, by proposition 3.16 it is enough to show that ∇Xp′ej = 0 for
any p′ ∈ U, j = 1, . . . , n. Choose a smooth path γ : [0, 1] → U such that
γ(0) = p, γ(1) = p′, and γ′(1) = Xp′ . Then by definition

0 = ∇γ′(1)ej = ∇Xp′ej ,

which proves the claim.

Hence parallel transport along loops associated to a flat connection in-
duces a well defined linear representation of the fundamental group of the
manifold M acting on the fibers of E. It is called the monodromy represen-
tation

ρ : π1(M,p)→ Aut(π−1(p)) ∼= GLn(C),
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and defined by
ρ : γ 7→Mγ ,

where Mγ : π−1(p) → π−1(p) is the monodromy operator acting on the
fibres π−1(p), induced by parallel transports of holomorphic sections along
the loop γ. Notice that by theorem 3.34 the monodromy representation is
well defined if the associated connection is flat.
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4 Bialgebras and quantum sl2

Next we present some definitions needed for a closer look on the KZ-equations
and in particular on the monodromy representation in the space of local solu-
tions of KZ. Recall from example 3.3 that solutions of the KZ-equations are
functions taking values in a linear complex tensor product representation of
a semisimple Lie algebra. Moreover, the equations contain a linear operator
acting on the tensor components.

Our main interest is the KZ-equations for the Lie algebra sl2. Thus,
before studying the monodromy of KZ we will recall briefly the structure of
sl2, the notion of bialgebras and Hopf algebras, and definition of the so called
quantum sl2, denoted by Uq(sl2), which is a q-deformation of the universal
enveloping algebra of sl2. We also recall the necessary representation theory
of sl2 and Uq(sl2), in the extent of irreducible highest weight representations
and semisimplicity. We will omit most of the proofs, since they are not
needed in the sequel, and some of the proofs are also quite long. However,
we state the results with careful references. For more details on Hopf algebras
and quantum groups the reader may consult e.g. [Kas95] or [Kyt11], and on
the theory of Lie algebras e.g. [Hum72] or [Kna04]. All the structures below
can be defined for an arbitrary field, but in most applications only complex
structures are used.

The reader need not to have background from the theory of Lie algebras,
representations or quantum groups although some experience in the basics of
algebra will be useful. Nevertheless, knowledge of linear algebra is necessary,
and we expect also that the reader is somewhat familiar with the concept
of tensor products. If V and W are two complex vector spaces, their tensor
product V ⊗ W can be thought of as a vector space generated by simple
tensors of the form v ⊗ w, where v ∈ V, w ∈ W. The tensor product is a
bilinear map V × W → V ⊗ W in the sense that for α ∈ C, v1, v2 ∈ V,
w1, w2 ∈W

(v1 + v2)⊗ w1 = v1 ⊗ w1 + v2 ⊗ w1

v1 ⊗ (w1 + w2) = v1 ⊗ w1 + v1 ⊗ w2

(αv1)⊗ w1 = v1 ⊗ (αw1) = α(v1 ⊗ w1).

More details on tensor products and the basics of algebra needed in this
chapter can be found in [Kas95] and [Kyt11].
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4.1 Bialgebras and Hopf algebras

Definition 4.1. A bialgebra is a C-vector space A with the following prop-
erties:

(i) (A,µ, η) is a unital associative algebra, with the product µ : A⊗A→ A
and the unit η : C→ A, η(1) = 1A, which are linear maps satisfying

µ ◦ (µ⊗ idA) = µ ◦ (idA ⊗ µ), (H1)

µ ◦ (η ⊗ idA) = idA = µ ◦ (idA ⊗ η), (H2)

(ii) (A,∆, ε) is a counital coassociative coalgebra, with the coproduct
∆ : A→ A⊗A and the counit ε : A→ C, which are linear maps
satisfying

(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆, (H1’)

(ε⊗ idA) ◦∆ = idA = (idA ⊗ ε) ◦∆, (H2’)

(iii) the maps ∆ : A→ A⊗A and ε : A→ C are morphisms of algebras.

The properties (H1) and (H1’) are called associativity and coassociativity,
whereas the properties (H2) and (H2’) are called unitality and counitality.

Definition 4.2. A bialgebra A is a Hopf algebra if it admits an antipode,
that is a linear map γ : A→ A such that

µ ◦ (γ ⊗ idA) ◦∆ = η ◦ ε = µ ◦ (idA ⊗ γ) ◦∆. (H3)

A Hopf subalgebra of a Hopf algebra A is a vector subspace of A which
is stable under the product, coproduct and antipode. A Hopf ideal is a two
sided ideal which also is a coideal and stable under the antipode. In other
words, if A is a Hopf algebra, a Hopf ideal J ⊂ A satisfies by definition

µ(J ⊗A), µ(A⊗ J) ⊂ J (ideal),

∆(J) ⊂ J ⊗A+A⊗ J, ε(J) = 0 (coideal),

γ(J) ⊂ J.

If J ⊂ A is a Hopf ideal then the quotient space A/J admits a natural Hopf
algebra structure.

Definition 4.3. For any two vector spaces V and W the tensor flip

τV,W : V ⊗W →W ⊗ V
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is defined by its action on simple tensors

τV,W (v ⊗ w) := w ⊗ v.

For a bialgebra A, we denote the opposite product by µop : A⊗A→ A,

µop = µ ◦ τA,A,

and the co-opposite coproduct by ∆cop : A→ A⊗A,

∆cop = τA,A ◦∆.

Definition 4.4. A linear representation of a group G on a vector space
V is a group homomorphism G → Aut(V ). A linear representation of an
algebra A on a vector space V is an algebra morphism A → End(V ). The
vector space V is said to be a (left) G- or A-module. The representation is
irreducible if it does not contain any proper invariant subspaces other than
{0}. Representations of bialgebras are their representations as algebras.

Let A be a bialgebra and let ρV , ρW be two representations of A on the
vector spaces V and W. It is easy to see that

ρV⊗W := (ρV ⊗ ρW ) ◦∆ : A→ End(V ⊗W )

is a representation of A on V ⊗W.
Moreover, for n > 2 the vector space V ⊗n is equipped with the represen-

tation
ρV ⊗n := (ρV ⊗ ρV ⊗ · · · ρV ) ◦∆(n) : A→ End(V ⊗n),

where ∆(n) is the (n− 1)-fold coproduct

∆(n) := (∆⊗ idA ⊗ idA ⊗ · · · ⊗ idA) ◦ · · · ◦ (∆⊗ idA) ◦∆.

4.2 The quantum enveloping algebra Uq(sl2)

A complex Lie algebra g is a complex vector space with a binary operation
[·, ·] : g × g → g, called the Lie product, which is bilinear, antisymmetric,
and satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

The reader may find a detailed presentation concerning the theory of semisim-
ple Lie algebras in [Hum72] or [Kna04].

Recall that the (semi)simple Lie algebra sl2(C) is generated by the ele-
ments e, f, h, subject to the relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

54



The element h generates the Cartan subalgebra, which is a maximal com-
mutative subalgebra of sl2. The generators e and f correspond to lowering
and raising operators for eigenvalues of h, respectively, in sl2-modules. For
semisimple Lie algebras all finite dimensional irreducible representations are
classified by highest weights, as is proved e.g. in [Hum72] and [Kna04].

The universal enveloping algebra U(g) of a Lie algebra g is a unital asso-
ciative algebra which consists of formal linear combinations of words whose
letters are elements of g, with the relations xy − yx − [x, y] = 0, and the
obvious multilinearity relations. It is uniquely determined by a universality
property, and the Lie algebra g can be embedded to U(g). It can also be
shown that there is an one-to-one correspondence between representations
of g and its universal enveloping algebra U(g).

Lemma 4.5. Let g be a complex Lie algebra. Its universal enveloping algebra
U(g) admits a bialgebra structure

∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0

for all x ∈ g ⊂ U(g).

Notice that since by definition g generates U(g) as an algebra, it is enough
to define the coproduct and counit for elements of g only. The proof is a
simple computation using the definition of a bialgebra. It follows from the
relation

∆(xy−yx) = ∆(x)∆(y)−∆(y)∆(x) = (xy−yx)⊗1+1⊗(xy−yx) = ∆([x, y])

that the coproduct is well defined in U(g).

It is obvious that the universal enveloping algebra U(sl2) can be defined
as follows.

Definition 4.6. The universal enveloping algebra U(sl2) is the algebra gen-
erated by the elements e, f, h, subject to the relations

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

The element
c := ef + fe+

1

2
h2 ∈ U(sl2)

is called the Casimir element of sl2.

The next lemma is a direct computation, and for details one may consult
[Kas95].

Lemma 4.7. The Casimir element belongs to the center of U(sl2).
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Remark. For any semisimple Lie algebra the Casimir element can be defined
as follows. Define the adjoint action

adx : g→ g

for every x ∈ g by adx(z) := [x, z], z ∈ g. Let {xi} be a basis of g, and {x̃i}
the dual basis with respect to the Killing form

B : g⊗ g→ C,

defined by B(x, y) := Tr(adxady). Notice that since g is a finite dimensional
vector space, the operators adx ∈ End(g) have well defined trace. We define
the Casimir element by

c :=
∑
i

xix̃i ∈ U(g).

It is shown in [Kna04] that the Casimir element is a central element in U(g)
which is independent of the choice of basis of g.

We are now ready to define the quantum enveloping algebra of sl2, which
is a q-deformation of the universal enveloping algebra U(sl2). Actually, q-
deformations of universal enveloping algebras can be defined for all complex
Lie algebras; see [Kas95].

Definition 4.8. Let q ∈ C\{0,±1}. The quantum enveloping algebra Uq(sl2)
is the algebra generated by the elements E,F,K,K−1 satisfying the relations

KK−1 = 1 = K−1K, KEK−1 = q2E,

EF − FE =
1

q − q−1
(K −K−1), KFK−1 = q−2F.

In Uq(sl2) the quantum Casimir element is a central element defined by

C := EF +
1

(q − q−1)2
(q−1K + qK−1).

The quantum enveloping algebra has the following Hopf algebra struc-
ture, proved in [Kyt11].

Lemma 4.9. Uq(sl2) admits a unique Hopf algebra structure determined by
the coproduct

∆(K) = K ⊗K, ∆(E) = E ⊗K + 1⊗ E, ∆(F ) = K−1 ⊗ F + F ⊗ 1.

The Hopf algebra structure is the following.

ε(K) = 1, ε(E) = 0 = ε(F ),

γ(K) = K−1, γ(E) = −EK−1, γ(F ) = −KF.
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Central elements act as scalars in finite dimensional irreducible represen-
tations of algebras. This follows from the next Schur’s lemma.

Lemma 4.10. (Schur) Let V and W be irreducible representations of an
algebra A and f : V →W an A-module map, that is a linear map such that

f(x.v) = x.f(v)

for all x ∈ A, v ∈ V. Then

(i) either f ≡ 0 or f is an isomorphism of A-modules, and
(ii) if V = W then f = λidV for some λ ∈ C.

Proof. By irreducibility of V, either Ker(f) = V, in which case f ≡ 0, or
Ker(f) = {0}. If Ker(f) = {0}, then f is injective, and by irreducibility of
W, Im(f) = W. This proves (i).

Suppose then V = W. Since C is algebraically complete, there exists an
eigenvalue λ ∈ C of f. Now the map f − λidV : V → V is an A-module map
with a nontrivial kernel, whence by irreducibility Ker(f − λidV ) = V. This
implies f − λidV = 0 and proves (ii).

Corollary 4.11. Let ρ : A → End(V ) be an irreducible finite dimensional
representation of an algebra A. Then for every central element a ∈ A

ρ(a) = λaidV

for some λa ∈ C.

Proof. Let a ∈ A be central. Then ρ(a) ∈ End(V ) is an A-module map,
since

ρ(a)(x.v) = ρ(a)ρ(x)v = ρ(ax)v = ρ(xa)v = ρ(x)ρ(a)v = x.ρ(a)v

for all x ∈ A, v ∈ V. The assertion follows from the case (ii) in Schur’s lemma
4.10.

By Poincare-Birkhoff-Witt theorem (see [Hum72]) the ordered words con-
sisting of the basis elements of a Lie algebra form a basis for the universal
enveloping algebra. Similarly, we may choose a Poincare-Birkhoff-Witt -type
basis {FmKkEn}m,n∈N∪{0},k∈Z for the q-deformation Uq(sl2).

Remark. In certain sense, when q → 1, the quantum enveloping algebra
becomes the universal enveloping algebra. However, this seems impossible
in view of definition 4.8. Let us think of K as the element qh = exp(h ln q),
where h is the generator of sl2. Then it is easy to see that

lim
q→1

qh − q−h

q − q−1
= h.
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So in this limit we get [E,F ] = h. Similarly, the relations KEK−1 = q2E
and KFK−1 = q−2F lead to [h,E] = 2E and [h, F ] = −2F. Thus we recover
the standard commutation relations of sl2.

There is also a more rigorous relation between Uq(sl2) and U(sl2), which
is studied in detail in [Kas95].

4.3 Representations of sl2 and Uq(sl2)

The rest of this chapter is devoted to representation theory of the Lie algebra
sl2 and its quantum version, Uq(sl2). We will state the main results without
proofs, for which the reader may consult e.g. [Kas95] or [Kyt11]. Remark-
ably, when the parameter q ∈ C \ {0} is not a root of unity, the irreducible
representations of sl2 and Uq(sl2) are of similar form. It is convenient to
define the q-integers, q-factorials and q-binomial coefficients

[n]q :=
qn − q−n

q − q−1
,

[n]q! := [n]q[n− 1]q · · · [1]q,[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
,

where q ∈ C \ {0,±1}. For q → 1 these become the usual integers and
factorials. Write q = eε ' 1 + ε, where ε > 0 is small. Then, as ε→ 0,

[n]q =
qn − q−n

q − q−1
=
eεn − e−εn

eε − e−ε

' (1 + εn)− (1− εn)

(1 + ε)− (1− ε)
=

2εn

2ε
= n.

Definition 4.12. Let V be a sl2-module. A highest weight vector v0 ∈ V of
weight µ ∈ C is defined by the conditions v0 6= 0,

h.v0 = µv0 and e.v0 = 0.

The finite dimensional irreducible representations of sl2 are classified by
highest weights. The following theorem is proved in [Kas95] and [Kyt11].

Theorem 4.13. For any integer d > 0 there exists a d-dimensional irre-
ducible representation Vd of sl2 with basis {vj}d−1

j=0 such that

h.vj = (d− 1− 2j)vj ,

f.vj = vj+1,

e.vj = j(d− j)vj−1.

There are no other finite dimensional irreducible sl2-modules. Here v0 is the
highest weight vector of weight d − 1, and the basis vectors are of the form
vj = f j .v0 for j = 0, . . . , d− 1, and vd = 0.
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Remark. From the proof of theorem 4.13 it follows that if an irreducible
representation V of sl2 contains a highest weight vector of weight µ, then it
follows that V = Vµ+1.

The irreducible representations of Uq(sl2) correspond to the sl2-modules
Vd up to choice of sign, which is also proved in [Kas95]. The highest weight
vectors w0 of Uq(sl2)-modules can be defined by the conditions w0 6= 0,

K.w0 = λw0 and E.w0 = 0.

Theorem 4.14. Let q ∈ C \ {0} not be a root of unity. For any integer
d > 0 and ε ∈ {±1} there exists a d-dimensional irreducible representation
W ε
d of Uq(sl2) with basis {wj}d−1

j=0 such that

K.wj = εqd−1−2jwj ,

F.wj = wj+1,

E.wj = ε[j]q[d− j]qwj−1.

There are no other finite dimensional irreducible Uq(sl2)-modules.

Semisimple Lie algebras have the property that all their finite dimensional
modules can be written as direct sums of finitely many irreducible modules.
In [Kyt11] it is shown that when q is not a root of unity the modules of
Uq(sl2) have also this property. However, when q is a root of unity Uq(sl2)
has indecomposable representations, which are not irreducible. In particular,
semisimplicity fails in this case.

4.4 The Clebsch-Gordan formula

Given two finite dimensional irreducible sl2- or Uq(sl2)-modules, consider the
tensor product of them equipped with the action defined by the coproduct
∆(x) = x ⊗ 1 + 1 ⊗ x, x ∈ sl2, or the coproduct of Uq(sl2) from lemma
4.9. We assume that q ∈ C \ {0} is not a root of unity. By semisimplicity
the tensor product can be decomposed into a finite direct sum of irreducible
modules. This decomposition has a nice form known as the Clebsch-Gordan
formula. In order to prove the formula we state first a very useful lemma.

Lemma 4.15. Let V = Vd1 ⊗ Vd2 be a sl2-module, and denote by {vi}d1−1
i=0

and {v′i}
d2−1
i=0 the bases of Vd1 and Vd2 , respectively, as in theorem 4.13. Then

for all p = 0, . . . ,min{d1, d2} − 1 in V there exists a highest weight vector
of weight d1 + d2 − 2p− 2, which is

v(p) =

p∑
s=0

(−1)s

s!

p!

(p− s)!
(d1 − 1− s)!

(d1 − 1)!

(d2 − p− 1 + s)!

(d2 − p− 1)!
vs ⊗ v′p−s.
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Proof. By a direct computation we see that for all p = 0, . . . ,min{d1, d2}−1
the vector v(p) is an eigenvector of h with eigenvalue d1 + d2 − 2p− 2, and e
annihilates v(p), that is

e.v(p) =

p∑
s=0

(−1)s

s!

p!

(p− s)!
(d1 − 1− s)!

(d1 − 1)!

(d2 − p− 1 + s)!

(d2 − p− 1)!
(e.vs ⊗ 1.v′p−s

+ 1.vs ⊗ e.v′p−s) = 0.

For more details the reader may consult [Kas95].

The existence of highest weight vectors of certain weights implies the
Clebsch-Gordan formula.

Proposition 4.16. (Clebsch-Gordan) Let d1, d2 > 0 be two integers. Then
there exists an isomorphism of sl2-modules

Vd1 ⊗ Vd2 ∼= Vd1+d2−1 ⊕ Vd1+d2−3 ⊕ · · · ⊕ V|d1−d2|+1.

Proof. By lemma 4.15 the module Vd1⊗Vd2 contains a highest weight vector
of weight d1 + d2 − 2p− 2 for all p = 0, . . . ,min{d1, d2} − 1. It follows that
it contains the irreducibles Vd1+d2−2p−1 as submodules. That is, there exist
nonzero morphisms of modules

fp : Vd1+d2−2p−1 → Vd1 ⊗ Vd2 ,

p = 0, . . . ,min{d1, d2} − 1, and moreover, because Vd1+d2−2p−1 are irre-
ducible, Ker(fp) = {0}. So each fp is an embedding of modules. Since the
submodules Vp are distinct for different p = 0, . . . , d2−1, their sum is direct.
Namely, if for r 6= s the intersection Vr ∩Vs 6= {0}, it would be a submodule
of both Vr and Vs, and then by irreducibility Vr∩Vs = Vs = Vr, contradicting
the fact that Vr and Vs are distinct. It remains to notice that the dimensions
of the vector spaces Vd1 ⊗ Vd2 and Vd1+d2−1 ⊕ Vd1+d2−3 ⊕ · · · ⊕ Vd1−d2+1 are
equal. Indeed,

dim(Vd1 ⊗ Vd2) = d1d2 =

d2−1∑
p=0

(d1 + d2 − 2p− 1)

= dim(Vd1+d2−1 ⊕ Vd1+d2−3 ⊕ · · · ⊕ Vd1−d2+1).

The quantum Clebsch-Gordan formula for Uq(sl2)-modules is proved in
the same way. The corresponding highest weight vectors are of the form

w(p) =

p∑
s=0

(−1)s

[s]q!

[p]q!

[p− s]q!
[d1 − 1− s]q!

[d1 − 1]q!

[d2 − p− 1 + s]q!

[d2 − p− 1]q!
qs(2p−d2−s)ws⊗w′p−s,

p = 0, . . . ,min{d1, d2} − 1.
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Proposition 4.17. (Quantum Clebsch-Gordan)
(i) Let d > 0 be an integer, ε, ε′ ∈ {±1}. Then the irreducible Uq(sl2)-modules

W ε′
d ⊗W ε

1
∼= W εε′

d
∼= W ε

1 ⊗W ε′
d

as Uq(sl2)-modules.
(ii) Let d1, d2 > 0 be two integers. Then there exists an isomorphism of

Uq(sl2)-modules

W 1
d1 ⊗W

1
d2
∼= W 1

d1+d2−1 ⊕W 1
d1+d2−3 ⊕ · · · ⊕W 1

|d1−d2|+1.

Example 4.18. The sl2-module V2⊗V2
∼= V1⊕V3, where the highest weight

vectors are

v(1) = v0 ⊗ v1 − v1 ⊗ v0 ∈ V1 ⊂ V2 ⊗ V2, and

v(0) = v0 ⊗ v0 ∈ V3 ⊂ V2 ⊗ V2,

with the obvious notation for the basis vectors of V2 ⊗ V2.
The corresponding Uq(sl2)-module is W 1

2 ⊗W 1
2
∼= W 1

1 ⊕W 1
3 , with the

highest weight vectors

w(1) = w0 ⊗ w1 − q−1w1 ⊗ w0 ∈W 1
1 ⊂W 1

2 ⊗W 1
2 , and

w(0) = w0 ⊗ w0 ∈W 1
3 ⊂W 1

2 ⊗W 1
2 .

Example 4.19. The sl2-module V3 ⊗ V3
∼= V1 ⊕ V3 ⊕ V5, where the highest

weight vectors are

v(2) = v0 ⊗ v2 − v1 ⊗ v1 + v2 ⊗ v0 ∈ V1,

v(1) = v0 ⊗ v1 − v1 ⊗ v0 ∈ V3, and

v(0) = v0 ⊗ v0 ∈ V5.

For Uq(sl2)-modules,W 1
3 ⊗W 1

3
∼= W 1

1 ⊕W 1
3 ⊕W 1

5 , with the highest weight
vectors

w(2) = w0 ⊗ w2 − w1 ⊗ w1 + q−2w2 ⊗ w0 ∈W 1
1 ,

w(1) = w0 ⊗ w1 − q−2w1 ⊗ w0 ∈W 1
3 , and

w(0) = w0 ⊗ w0 ∈W 1
5 .
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5 Monodromy of KZ(sl2)

Now that we have introduced the theory of analytic continuation in the
language of flat connections on vector bundles over complex manifolds, and
the basics of bialgebras, together with recalling the necessary results on
representations of the Lie algebra sl2 and its quantum counterpart Uq(sl2),
we are finally ready to consider the KZ-equations associated to sl2. We will
next explain how to find the fundamental group π1(YN ) of the complex
manifold

YN = {(z1, . . . , zN ) ∈ CN} \
⋃
i<j

{zi = zj},

where the KZ-equations are analytically defined, and how to compute the
monodromy representation of π1(YN ) associated to the solutions of KZ in the
case of the (semi)simple Lie algebra sl2. Our treatment of the monodromy
of KZ for sl2 can be generalised to any semisimple Lie algebra following the
same lines. The reason why we have chosen to present the case of sl2 is that
for sl2 the solutions of KZ are the simplest to obtain, although even for that
case they include all generalised hypergeometric functions studied in the last
century.

We first introduce a group closely related to the symmetric group SN ,
called the braid group BN , which is a finitely generated group intuitively
easy to picture. It turns out that a subgroup of this group is isomorphic
to the fundamental group π1(YN ). We will construct not only a monodromy
representation of π1(YN ) but also a representation of BN , using parallel
transport in a quotient bundle having a flat connection, obtained from the
trivial vector bundle and the connection defined by the Pfaffian system KZ.
The advantage of this is twofold. Naturally, we obtain by restriction the
monodromy of KZ. Moreover, as we will see in section 6.8, it turns out
that the monodromy representation of BN is equivalent to a representation
arising from the extended quantum group Uq(sl2)[

√
K]. This is a remarkable

and suprising relation between two apparently distinct ways to construct
representations of the braid group.

After introducing the fundamental group of π1(YN ) and the monodromy
representation of BN , we will solve KZ(sl2) first in the simplest low dimen-
sional cases, and then in general. We will not prove in detail all the results
concerning solutions of KZ, but refer to [EFK98], since the proofs are not
very illuminating. The crucial point about the solutions is that they can
be written in integral form, indeed very similar to the Euler’s solutions of
HGE. Moreover, this enables us to use the “contour deformation“ method
in computing the monodromy of these solutions. The “contour deformation“
method produces a monodromy representation of BN which is later seen to
be equivalent to the representation arising from Uq(sl2)[

√
K].
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5.1 The KZ-equations for sl2

Let V be a linear finite dimensional complex representation of a semisimple
Lie algebra g, and W := V ⊗N the tensor product representation. Let

YN = {(z1, . . . , zN ) ∈ CN} \
⋃
i<j

{zi = zj}

be a complex manifold with the natural structure, and φ : YN → W a
unknown function defined on YN taking values in the vector space W. Let
also Ω ∈ U(g)⊗U(g) be as defined below, acting on V ⊗V, and let κ ∈ C. By
Ωij we mean the operator Ω acting on the i:th and j:th tensor component
of W.

Denote the coproduct on the universal enveloping algebra U(g) by

∆ : U(g)→ U(g)⊗ U(g),

defined on the generators x ∈ g of U(g) by

∆(x) := 1⊗ x+ x⊗ 1.

Let c ∈ U(g) be the Casimir element, which is central in U(g) (see lemma
4.7). The operator Ω defined by

Ω :=
1

2
(∆(c)− 1⊗ c− c⊗ c)

is called the symmetric invariant tensor. For the (semi)simple Lie algebra
sl2 with the basis {h, e, f} it is of the form

Ω =
1

2
h⊗ h+ e⊗ f + f ⊗ e.

If v1, . . . , vN ∈ V, the action of Ωij on W = V ⊗N for sl2 can be written on
simple tensors as

Ωij(v1 ⊗ · · · ⊗ vN ) =
1

2
v1 ⊗ · · · ⊗ h.vi ⊗ · · · ⊗ h.vj ⊗ · · · ⊗ vN

+ v1 ⊗ · · · ⊗ e.vi ⊗ · · · ⊗ f.vj ⊗ · · · ⊗ vN
+ v1 ⊗ · · · ⊗ f.vi ⊗ · · · ⊗ e.vj ⊗ · · · ⊗ vN ,

where 0 < i < j ≤ N.
Remark. Clearly the operator Ω for sl2 is symmetric. In general, let {xi}
be a basis of g and {x̃i} the dual basis with respect to the Killing form
B : g ⊗ g → C, defined by B(x, y) := Tr(adxady), where the adjoint action
adx : g → g is defined by adx(z) := [x, z]. Then Ω can be written using the
expression c =

∑
i xix̃i for the Casimir element as

Ω =
1

2
(∆(c)− 1⊗ c− c⊗ c) =

1

2

∑
i

(xi ⊗ x̃i + x̃i ⊗ xi),

and symmetricity follows immediately.
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Consider the KZ-equations

∂

∂zi
φ(z1, . . . , zN ) =

1

κ

∑
j 6=i

Ωij

zi − zj
φ(z1, . . . , zN ), (KZ(sl2))

i = 1, . . . , N, associated to sl2. Recall that U(sl2) acts on V ⊗N by

(ρV ⊗ · · · ⊗ ρV ) ◦∆(N)(x) : V ⊗N → V ⊗N ,

where x ∈ sl2 ⊂ U(sl2) and ∆(N) is the (N − 1)-fold coproduct. That is, if
v1, . . . , vN ∈ V, the action of x ∈ sl2 on simple tensors looks like

x.(v1 ⊗ · · · ⊗ vN ) =
N∑
i=1

v1 ⊗ · · · ⊗ x.vi ⊗ · · · ⊗ vN .

The next proposition says that the operator Ω is invariant with respect
to the action of U(sl2).

Proposition 5.1. The element

Ω =
1

2
h⊗ h+ e⊗ f + f ⊗ e ∈ U(sl2)⊗ U(sl2)

satisfies
[∆(x),Ω] = 0

for all x ∈ U(sl2).

Proof. Since by lemma 4.7 the element c = ef +fe+ 1
2h

2 is central in U(sl2)
and the coproduct ∆ : U(sl2)→ U(sl2)⊗ U(sl2) is a morphism of algebras,
the identity

[∆(x),∆(c)] = ∆([x, c]) = 0

holds for every x ∈ U(sl2). Hence if x ∈ sl2,

[∆(x), 1⊗ c+ c⊗ c] = [1⊗ x+ x⊗ 1, 1⊗ c+ c⊗ c]
= [1⊗ x, 1⊗ c] + [1⊗ x, c⊗ c] + [x⊗ 1, 1⊗ c] + [x⊗ 1, c⊗ c] = 0.

But by definition

Ω =
1

2
(∆(c)− 1⊗ c− c⊗ c),

and the assertion follows from the fact that sl2 generates U(sl2) as an algebra.

Remark. Notice that the above proof shows the invariance of the symmet-
ric tensor Ω = 1

2(∆(c) − 1 ⊗ c − c ⊗ c), where c is the Casimir element,
also for a general semisimple Lie algebra. We only used the fact that the
Casimir element belongs to the center of the Lie algebra, which is true for
any semisimple Lie algebra [Kna04].
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The invariance of Ω means that it commutes with the action of U(sl2) on
V ⊗ V, and hence for every i, j = 1, . . . , N the operator Ωij commutes with
the action of U(sl2) on V ⊗N . This implies in particular the following.

Corollary 5.2. For any solution φ : YN → V ⊗N of KZ(sl2) and for any
x ∈ U(sl2) also the function x.φ : YN → V ⊗N defined by

x.φ(z1, . . . , zN ) := ((ρV ⊗ · · · ⊗ ρV ) ◦∆(N)(x))(φ(z1, . . . , zN ))

is a solution of KZ(sl2).

In the sequel we will consider the case when V is irreducible. Then
by theorem 4.13 it is of the form V = Vd. By semisimplicity any finite
dimensional sl2-module is a direct sum of irreducible modules, whence it
is enough to solve the monodromy of KZ(sl2) in a tensor product V ⊗N of
irreducible modules.

5.2 Braids

Recall that the monodromy representation associated to KZ is defined as a
linear representation of the fundamental group of the manifold YN , by paral-
lel transport along loops on YN . Hence in order to compute the monodromy
of KZ we first have to find out what the fundamental group of YN is. Thus we
will in this section define the braid group, which can be thought of as paths
(not necessarily loops) on the manifod YN . It turns out that a subgroup of
the braid group, consisting of elements that correspond loops on YN , called
the pure braid group, is isomorphic to the fundamental group of YN .

5.2.1 The braid group

Definition 5.3. A simple polygonal arc in C× [0, 1] is the union

L =

n−1⋃
i=1

[Pi, Pi+1]

of a finite number of line segments [Pi, Pi+1] ⊂ C× [0, 1] such that

(Pi, Pi+1) ∩ (Pj , Pj+1) = ∅ and Pi 6= Pj for i 6= j,

except possibly for the first and last points {i, j} = {1, n}.
The points Pi ∈ C×[0, 1] are called the vertices of L and the line segments

[Pi, Pi+1] its edges. The arc is said to be closed if P1 = Pn, and oriented if
it has been given an orientation in the usual sense of C× [0, 1].

Notice that for an oriented arc the notion of a starting and an end point
is meaningful. Fix an integer n > 0.
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Definition 5.4. A braid b with n strands is the union of a finite number of
pairwise disjoint simple oriented polygonal arcs in C× [0, 1] such that

(i) b ∩ (C× {0, 1}) = ({1, . . . , n} × {0}) ∪ ({1, . . . , n} × {1}),
that is, b intersects the boundary planes of C× [0, 1] transversally,

(ii) every point in {1, . . . , n} × {0} is a starting point of an arc in b,
and every point in {1, . . . , n} × {1} is an end point of an arc in b,

(iii) b contains no closed arc, and

(iv) for all t ∈ [0, 1] the intersection of b with the plane C× {t} consists
of exactly n points.

Figure 6 shows a plane diagram of a braid with five strands. The order
of the braids composed is from bottom to top, as explained below in detail.

Figure 6: A braid with five strands

Definition 5.5. An isotopy of the space C× [0, 1] is a piecewise linear map

h : [0, 1]× C× [0, 1]→ C× [0, 1]

such that for any t ∈ [0, 1] the map

ht : C× [0, 1]→ C× [0, 1]

is a homeomorphism,
h0 = idC×[0,1],

and ht restricts to the identity on the boundary, that is

(ht)|C×{0,1} = idC×{0,1}.

Two braids b1, b2 are isotopic if there exists an isotopy h of C × [0, 1]
such that h1(b1) = b2 and for every t ∈ [0, 1] the set ht(b1) is a braid with n
strands.

Isotopy is an equivalence relation on the set of braids with n strands.
From now on we identify braids with their equivalence classes.
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We define the composition of braids as follows. Let b1, b2 be two braids
with n strands such that the end points of b1 are the starting points of b2.
Place b2 on top of b1 to obtain a braid b2b1 in C× [0, 2] = C× ([0, 1]∪ [1, 2]),
and “shrink“ b2b1 into C× [0, 1]. We read the composed braids from right to
left so that in plane diagrams such as figure 6 the braids are placed on top
of each other starting from the bottom of the diagram and from the right of
the composition b1 · · · bk.

In [Kas95] it is shown that the composition of braids is compatible with
isotopy. Moreover, we have the following result which is in fact quite intu-
itive. For the proof the reader may consult [Boh47] or [Art47].

Proposition 5.6. Denote by Bn the isotopy classes of braids with n strands.
The composition of braids induces a product on Bn. Moreover, Bn is a group
which can be presented by the generators σ1, . . . , σn−1 and relations

σiσj = σjσi, |i− j| > 1, (6)

σiσi+1σi = σi+1σiσi+1 (7)

for i, j = 1, . . . , n− 1, n > 2. Also, B1 is the trivial group, and B2
∼= Z.

The generators and relations are illustrated by figure 7 below.

Since transpositions of the symmetric group Sn satisfy the braid group
relations, there is a homomorphism between these groups. Indeed, every
braid b ∈ Bn defines a unique permutation τ(b) ∈ Sn of the set of its starting
and end points.

Proposition 5.7. The map b 7→ τ(b) induces a surjective homomorphism
from the braid group Bn to the symmetric group Sn.

Proof. Clearly isotopic braids induce the same permutation. The map is a
homomorphism since it respects the composition of braids. By proposition
5.6 the group Bn is generated by σi, i = 1, . . . , n − 1, which induce the
permutations (i, i + 1) ∈ Sn. Since Sn is generated by these transpositions
the map is surjective.

The kernel of the homomorphism b 7→ τ(b) is a normal subgroup of Bn,
and it is called the pure braid group Pn. It consists of braids which preserve
the order of their starting and end points.
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and

=

=

= =

σi+1σiσi+1

i i

σi =

1 σ−1
i σi

σiσi+1σi

σi+2σi σiσi+2

i+ 1i+ 1

σiσ
−1
i

σ−1
i =

Figure 7: Braid group relations

5.2.2 Representing braids as loops

We are now ready to determine the fundamental group of the manifold

Yn = {(z1, . . . , zn) ∈ Cn} \
⋃
i<j

{zi = zj},

where n > 0 is an integer. The group π(Yn) is actually isomorphic to the pure
braid group. We will also find that the whole braid group is isomorphic to
the fundamental group of the configuration space Cn := Yn/Sn of n distinct
points in C, where the symmetric group Sn acts on Yn by permutation of
coordinates.

Consider loops on Cn representing different homotopy classes. It is clear
that every homotopy class contains a piecewise linear path. Hence a loop
on Cn with the base point p := [(z1, . . . , zn)] ∈ Cn can be thought of as a
piecewise linear map f = (f1, . . . , fn) : [0, 1]→ Cn such that for all t ∈ [0, 1],
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i, j = 1, . . . , n, i 6= j,

fi(t) 6= fj(t), and
f(0) = (f1(0), . . . , fn(0)) = (z1, . . . , zn),

{f1(1), . . . , fn(1)} = {z1, . . . , zn}.

Homotopic loops in Cn correspond to isotopic braids with n strands.

Proposition 5.8. The braid group Bn is isomorphic to the fundamental
group of Cn.

Proof. The proof consists of two observations. Firstly, we show that loops
in Cn correspond to braids with n strands.

Let f : [0, 1] → Cn be a loop as above. By connectedness we may
assume that f(0) = (1, . . . , n) ∈ Cn. Then for any i = 1, . . . , n the map
fi : [0, 1] → C is a path that moves the point i ∈ C to one of the points
{1, . . . , n}, and it defines a simple oriented polygonal arc in C × [0, 1]. By
definition {f1, . . . , fn} forms a collection of pairwise disjoint simple oriented
polygonal arcs as in definition 5.4, that is a braid with n strands.

On the other hand, for any braid b with n strands, define for all t ∈ [0, 1]
and i = 1, . . . , n the map fi(t) as the projection pr1 of the intersection of
C×{t} with the connected component of b starting at (i, 0) ∈ C× [0, 1] onto
C. Then the map f = (f1, . . . , fn) : [0, 1] → Cn is a piecewise linear map
satisfying the conditions of a loop on Cn.

Secondly, we show that homotopy of loops on Cn corresponds to isotopy
of braids with n strands.

Let f and g be two homotopic loops on Cn. Then by definition of the
homotopy of paths there exists a piecewise linear map

H = (H1, . . . ,Hn) : [0, 1]× [0, 1]→ Cn

such that the following holds. We denote by s ∈ [0, 1] the deformation
parameter associated to the homotopy H, and by t ∈ [0, 1] the parameter
(time) of the loops.

(i) For all s, t ∈ [0, 1]× [0, 1], i, j = 1, . . . , n, i 6= j

Hi(s, t) 6= Hj(s, t),

(ii) for all s ∈ [0, 1], i = 1, . . . , n

Hi(s, 0) = fi(0) = gi(0) and Hi(s, 1) = fi(1) = gi(1),

that is Hs(0) = f(0) = g(0), and
(iii) for all t ∈ [0, 1], i = 1, . . . , n

Hi(0, t) = fi(t) and Hi(1, t) = gi(t),

that is H(0, t) = f(t) and H(1, t) = g(t).
The assertion follows from analogy with definition 5.5.
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It is also intuitively clear that the fundamental group of Yn is isomorphic
to the pure braid group Pn, that is braids that preserve the order of the points
{z1, . . . , zn}. This fact can be proved similarly as the previous proposition.

1 2

A loop γ in Y2 The braid σ−11 σ−11 ∈ B2

z1 z2

∈ Y2

γ

∈ Y2

time

Figure 8: The fundamental group of Y2 is isomorphic to the pure braid group
P2.

5.2.3 The monodromy representation of the braid group

Recall that the connection ∇(Λ) = d− Λ, where

Λ =
1

κ

∑
i

∑
j 6=i

Ωij

zi − zj
dzi =

1

κ

∑
1≤i<j≤N

Ωij

zi − zj
(dzi − dzj),

associated to the KZ-equations, is flat. Hence by theorem 3.34 it defines a
representation of the fundamental group of YN acting on the fibres V ⊗N of
the trivial bundle YN × V ⊗N . This monodromy representation is motivated
by analytic continuation of solutions in the case of ODE’s in one complex
variable. In higher dimensions the corresponding “continuation“ is paral-
lel transport of local horizontal sections, which are local solutions of KZ,
along loops on YN with respect to the flat connection ∇(Λ). Also in this case
analytic continuations of solutions are again solutions of KZ.

On the other hand, the fundamental group of the manifold YN is iso-
morphic to the pure braid group PN . So the flat connection ∇(Λ) defines a
monodromy representation

ρ
(Λ)
N : PN → Aut(V ⊗N )

of the pure braid group.
However, we are interested in representations of the whole braid group

BN . Since PN is a subgroup of BN , the monodromy of KZ follows from re-
stricting the monodromy representation of BN (which will be defined shortly)
to the set PN .
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Let the symmetric group SN act naturally on YN , that is by

(z1, . . . , zN ).σ := (zσ(1), . . . , zσ(N))

for all (z1, . . . , zN ) ∈ YN , σ ∈ SN , and let

CN := YN/SN

be the configuration space. Consider also the left group action of SN on
V ⊗N by

σ.(u1 ⊗ · · · ⊗ uN ) = (uσ−1(1) ⊗ · · · ⊗ uσ−1(N))

for all u1 ⊗ · · · ⊗ uN ∈ V ⊗N , σ ∈ SN .
Combining these we obtain a right action of SN on the bundle YN×V ⊗N

by
(z;w).σ = (z.σ;σ−1.w),

for all z := (z1, . . . , zN ) ∈ YN , w = u1 ⊗ · · · ⊗ uN ∈ V ⊗N and σ ∈ SN .
Since in CN the points (z1, . . . , zN ) and (zσ(1), . . . , zσ(N)) represent equal

elements, the bundle projection p : YN × V ⊗N → YN factors through the
quotient space (YN × V ⊗N )/SN , which hence becomes a vector bundle over
CN with fibres isomorphic to V ⊗N . Notice that in (YN × V ⊗N )/SN we have

((z1, . . . , zN );σ.w) = ((zσ(1), . . . , zσ(N));w).

Furthermore, since by proposition 3.16 the values of a connection can be
defined locally, the connection ∇(Λ) on (YN × V ⊗N ) induces a flat connec-
tion ∇KZ on (YN × V ⊗N )/SN , and we obtain a well defined monodromy
representation of the braid group BN ,

ρKZN : BN → Aut(V ⊗N ), ρKZN : σi 7→Mγi ,

where γi : [0, 1] → CN is the loop in CN corresponding to the braid group
generator σi (recall proposition 5.8).

In summary, local horizontal sections of the trivial bundle (YN × V ⊗N )
are local solutions of KZ, and parallel transport along loops on YN with
respect to the flat connection ∇(Λ) defines the monodromy of KZ. It is
a linear representation of the group PN ∼= π1(YN , z0) with any base point
z0 ∈ YN , since the manifold YN is connected. However, we will first consider
parallel transport of local horizontal sections of (YN × V ⊗N )/SN , which are
nothing but horizontal sections of (YN × V ⊗N ) modulo SN , with respect
to the flat connection ∇KZ (which is ∇(Λ) modulo SN ). This defines a
linear representation of the fundamental group of the configuration space
CN , namely BN ∼= π1(CN , [z0]), where [z0] ∈ CN denotes the equivalence
class of the point z0 ∈ YN modulo SN in CN = YN/SN .
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5.3 The two-point KZ-equations in V2 ⊗ V2

Since KZ is a system of partial differential equations with solutions taking
values in a representation of a semisimple Lie algebra, solving the equations
is not easy in general. Next we consider the first nontrivial example of solving
KZ(sl2) and computing the monodromy, namely V2 ⊗ V2. By example 4.18

V2 ⊗ V2
∼= V1 ⊕ V3,

with the highest weight vectors v(1) ∈ V1 and v(0) ∈ V3. For convenience (and
to keep in touch with physics, where s stands for singlet and t for triplet),
denote by

s := v(1) = v0 ⊗ v1 − v1 ⊗ v0,

t+ := v(0) = v0 ⊗ v0,

t0 := f.t+ = v1 ⊗ v0 + v0 ⊗ v1,

t− := f2.t+ = 2v1 ⊗ v1,

whence {s} is a basis of V1 ⊂ V2⊗V2 and {t+, t0, t−} is a basis of V3 ⊂ V2⊗V2.
The action of Ω on V2 ⊗ V2 is by direct computation

Ω.s = −3

2
s, Ω.t+ =

1

2
t+, Ω.t0 =

1

2
t0, Ω.t− =

1

2
t−.

Notice that Ω acts as a scalar on each irreducible component of the direct
sum decomposition of V2 ⊗ V2 separately, which is to be expected. Namely,
Ω is a module map and hence by Schur’s lemma 4.10 the maps Ω|V1 and Ω|V3
are either zero maps or isomorphisms of modules. Moreover, because every
irreducible submodule in the Clebsch-Gordan decomposition is of different
dimension, it follows that

Ω|V1 = λ1idV1 and Ω|V3 = λ3idV3

for some λ1, λ3 ∈ C. From above we see that actually λ1 = −3
2 and λ3 = 1

2 .

Remark. Notice that by the above observation Ω acts as a scalar on each irre-
ducible component of the direct sum decomposition of a general sl2-module
Vd1 ⊗Vd2 , since both Schur’s lemma 4.10 and the Clebsch-Gordan decompo-
sition hold in general dimensions. We will compute the eigenvalues of Ω on
Vd1 ⊗ Vd2 in section 5.4.

5.3.1 Solutions of KZ in V2 ⊗ V2

Let now {s, t+, t0, t−} be the ordered basis for V2 ⊗ V2 given in the previous
section. Then the Pfaffian system of equations KZ(sl2) can be written as{

∂
∂z1

φ(z1, z2) = 1
κ

Ω12
z1−z2φ(z1, z2)

∂
∂z2

φ(z1, z2) = 1
κ

Ω21
z2−z1φ(z1, z2),
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where

Ω12 = Ω21 = Ω =


−3

2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

2


in the basis {s, t+, t0, t−}.

Adding the two equations together we obtain{
∂

∂z1
+

∂

∂z2

}
φ(z1, z2) = 0,

which implies φ(z1, z2) = ψ(z1−z2) = ψ(z), where z = z1−z2. The derivative
of ψ is

d

dz
ψ(z) =

d

dz1
φ(z1, z2) =

1

κ

Ω12

z1 − z2
φ(z1, z2) =

Ω

κz
ψ(z).

Since the bundle Y2× (V ⊗2
2 ) is of rank four, we want to find four (point-

wise) linearly independent solutions, i.e. linearly independent horizontal
sections, for the equation KZ(sl2). It suffices to find nonzero solutions pro-
portional to the linearly independent basis vectors s, t+, t0 and t−. Actually,
by proposition 5.1 it is enough to find the two solutions proportional to s
and t+; the other two are obtained from the solution proportional to t+ by
repeated action of f ∈ sl2. This is also true in general; in order to solve
KZ(sl2) it suffices to find solutions proportional to highest weight vectors of
the sl2-modules.

Consider first the solution of the form

φs(z1, z2) = ψs(z) = gs(z)s,

where g : C \ {0} → C is analytic. By equation KZ(sl2)

d

dz
ψs(z) =

dgs(z)

dz
s =

gs(z)

κz
Ω.s = −3gs(z)

2κz
s

which has the fundamental solution

gs(z) = z−
3
2κ .

Similarly we obtain the solutions

φt+(z1, z2) = gt(z)t+, φt0(z1, z2) = gt(z)t0, φt−(z1, z2) = gt(z)t−,

where
gt(z) = z

1
2κ .
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Hence a fundamental system of solutions of KZ(sl2) is
φs(z1, z2) = (z1 − z2)−

3
2κ s

φt+(z1, z2) = (z1 − z2)
1
2κ t+

φt0(z1, z2) = (z1 − z2)
1
2κ t0

φt−(z1, z2) = (z1 − z2)
1
2κ t−,

and a general solution is

φ(z1, z2) = Cs(z1 − z2)−
3
2κ s+ (z1 − z2)

1
2κ (Ct+t+ + Ct0t0 + Ct−t−),

where Cs, Ct+ , Ct0 , Ct− ∈ C.

5.3.2 Monodromy of KZ in V2 ⊗ V2

Next we would like to find out how the monodromy operator corresponding
to the generator of the fundamental group of C2 acts on the solutions of
KZ(sl2). Choose for base point of C2 the equivalence class of the point
(1, 2) ∈ Y2, whence the generator of the fundamental group is the homotopy
class of the path γ1 : [0, 1]→ Y2 defined by

γ1(r) = (z1(r), z2(r)) :=
1

2
(3− eπir, 3 + eπir).

Recall that the homotopy class of γ1 corresponds to the inverse of the braid
group generator σ1 ∈ B2. Moreover, notice that γ1 defines a loop in C2, but
on Y2 it is not a closed path.

σ−11

Im

Re1

1 2

r = 0

r = 1

corresponds toz2(r)

z1(r)
2

Figure 9: A loop in C2

Consider the effect of parallel transport along γ1 on the fundamental
system of solutions{

φs(z1, z2) = gs(z1 − z2)s = (z1 − z2)−
3
2κ s

φt(z1, z2) = gt(z1 − z2)t = (z1 − z2)
1
2κ t,
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of KZ(sl2), t ∈ {t+, t0, t−}. At γ1(0) = (1, 2), fix the branches of the initial
values {

gs(1− 2) = (−1)−
3
2κ

gt(1− 2) = (−1)
1
2κ .

At γ1(r), r ∈ [0, 1], we have{
gs(z1(r)− z2(r)) = (−eπir)−

3
2κ

gt(z1(r)− z2(r)) = (−eπir)
1
2κ ,

and in particular, when r = 1,{
gs(z1(1)− z2(1)) = gs(2− 1) = (−1)−

3
2κ e−

3
2κ
πi = gs(1− 2)e−

3
2κ
πi

gt(z1(1)− z2(1)) = gt(2− 1) = (−1)
1
2κ e

1
2κ
πi = gt(1− 2)e

1
2κ
πi.

In view of examples 1.6 and 1.8 we can write the effect of parallel transport
on Y2 along γ1, with respect to the flat connection ∇Λ, on the horizontal
sections with values ((z1, z2);φs(z1, z2)), ((z1, z2);φt(z1, z2)) ∈ Y2 × V ⊗2

2 as{
((1, 2);φs(1, 2)) 7→ e−

3
2κ
πi((2, 1);φs(1, 2))

((1, 2);φt(1, 2)) 7→ e
1
2κ
πi((2, 1);φt(1, 2)),

where φs(1, 2) = (−1)−
3
2κ s and φt(1, 2) = (−1)

1
2κ t.

Notice that in (Y2 × V ⊗2
2 )/S2

((2, 1); s) =((2, 1); v0 ⊗ v1 − v1 ⊗ v0)

=((1, 2); τV2,V2(s)) = ((1, 2); v1 ⊗ v0 − v0 ⊗ v1) = ((1, 2);−s),
((2, 1); t+) =((2, 1); v0 ⊗ v0) = ((1, 2); τV2,V2(t+)) = ((1, 2); v0 ⊗ v0)

=((1, 2); t+),

((2, 1); t0) =((2, 1); v1 ⊗ v0 + v0 ⊗ v1) = ((1, 2); τV2,V2(t0))

=((1, 2); v0 ⊗ v1 + v1 ⊗ v0) = ((1, 2); t0),

((2, 1); t−) =((2, 1); 2v1 ⊗ v1) = ((1, 2); τV2,V2(t−))

=((1, 2); 2v1 ⊗ v1) = ((1, 2); t−).

Hence the monodromy operator corresponding to the loop γ1 on C2 is
Mγ1 , acting on the space of solutions of KZ(sl2) by{

Mγ1 : φs(z1, z2) 7→ −e−
3
2κ
πiφs(z1, z2)

Mγ1 : φt(z1, z2) 7→ e
1
2κ
πiφt(z1, z2).

Letting q := e
πi
κ the inverse operator can be written in the form

M−1
γ1 |V1 = −q

3
2 idV1 , M−1

γ1 |V3 = q−
1
2 idV3 ,

and the braid group representation associated to the solutions of KZ(sl2) is

ρKZ2 : B2 → Aut(V ⊗2
2 ), ρKZ2 : σ1 7→M−1

γ1 .
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5.4 The two-point KZ-equations in Vd ⊗ Vd

By proposition 4.16

Vd ⊗ Vd ∼= V1 ⊕ V3 ⊕ · · · ⊕ V2d−1,

and by Schur’s lemma 4.10, because every submodule in this Clebsch-Gordan
decomposition is of different dimension, Ω acts as a scalar on every compo-
nent separately. Thus for every i(p) = 2(d − p) − 1 ∈ {1, 3, 5, . . . , 2d − 1},
p = 0, . . . , d− 1,

Ω|Vi(p) = λi(p)idVi(p)

for some λi(p) ∈ C. In order to find out the monodromy representation of the
braid group B2, we need to compute the eigenvalues of Ω. After this it suf-
fices to find for all highest weight vectors v(p), p = 0, . . . , d−1, obtained from
lemma 4.15, a nonzero solution of KZ(sl2) proportional to v(p). By propo-
sition 5.1 the rest of the basis of the space of solutions can be constructed
from these by repeated action of f ∈ sl2.

In view of solving KZ in V2 ⊗ V2, let

φv(p)(z1, z2) = gv(p)(z1 − z2)v(p)

be such a solution, where gv(p) : C \ {0} → C is analytic. As before, from
KZ(sl2) it follows that we have a fundamental solution of the form

gv(p)(z) = z
λi(p)
κ

and a fundamental system of solutions of KZ(sl2) is obtained from

φv(p)(z1, z2) = (z1 − z2)
λi(p)
κ v(p),

p = 0, . . . , d− 1, by repeated action of f.
Similarly as before, the monodromy representation

ρKZ2 : B2 → Aut(V ⊗2
d ), ρKZ2 : σ1 7→M−1

γ1 ,

is found to be defined by

M−1
γ1 |Vi(p) = q−λi(p)τ−1

Vd,Vd
|Vi(p) ,

where q = e
πi
κ .

Notice that
τVd,Vd ◦ τVd,Vd = idVd⊗Vd ,

whence τVd,Vd has only the two possible eigenvalues±1.Moreover, since τVd,Vd
is a morphism of representations of sl2, and every submodule in the Clebsch-
Gordan decomposition of Vd⊗Vd is of different dimension, by Schur’s lemma
4.10 τVd,Vd acts as a scalar on each Vi(p) separately, and it follows that

τ−1
Vd,Vd
|Vi(p) = τVd,Vd |Vi(p) = ±idVi(p) .
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From the formula

v(p) =

p∑
s=0

(−1)s

s!

p!

(p− s)!
(d1 − 1− s)!

(d1 − 1)!

(d2 − p− 1 + s)!

(d2 − p− 1)!
vs ⊗ v′p−s

for the highest weight vectors generating the submodules Vi(p) ⊂ Vd ⊗ Vd,
where d1 = d2 = d, and {vj}d1−1

j=0 , {v′j}
d2−1
j=0 are the natural bases of Vd1 and

Vd2 , respectively, we see that

τVd,Vd(v
(p)) = (−1)pv(p),

whence
τVd,Vd |Vi(p) = (−1)pidVi(p) .

Let us next compute the eigenvalues of Ω = 1
2h ⊗ h + e ⊗ f + f ⊗ e on

Vd1 ⊗ Vd2 . To shorten the notation, write

α
(p)
d1,d2

(s) :=
(−1)s

s!

p!

(p− s)!
(d1 − 1− s)!

(d1 − 1)!

(d2 − p− 1 + s)!

(d2 − p− 1)!
,

s = 0, . . . , p. By linearity, it is enough to compute

Ω.(vs ⊗ v′p−s) =
1

2
h.vs ⊗ h.v′p−s + e.vs ⊗ f.v′p−s + f.vs ⊗ e.v′p−s

=
1

2
(d1 − 1− 2s)(d2 − 1− 2(p− s))(vs ⊗ v′p−s)

+ s(d1 − s)(vs−1 ⊗ v′p−s+1) + (p− s)(d2 − (p− s))(vs+1 ⊗ v′p−s−1),

where we used the action of sl2 on the irreducible module Vd given by theorem
4.13,

h.vj = (d− 1− 2j)vj ,

f.vj = vj+1,

e.vj = j(d− j)vj−1.

Observe that

α
(p)
d1,d2

(s− 1) = − (−1)s

(s− 1)!

p!

(p− s+ 1)!

(d1 − s)!
(d1 − 1)!

(d2 − p− 2 + s)!

(d2 − p− 1)!

=− s(d1 − s)
(p− s+ 1)(d2 − p− 1 + s)

(−1)s

s!

p!

(p− s)!
(d1 − 1− s)!

(d1 − 1)!

(d2 − p− 1 + s)!

(d2 − p− 1)!

=− s(d1 − s)
(p− s+ 1)(d2 − p− 1 + s)

α
(p)
d1,d2

(s)

and similarly

α
(p)
d1,d2

(s+ 1) = − (−1)s

(s+ 1)!

p!

(p− s− 1)!

(d1 − 2− s)!
(d1 − 1)!

(d2 − p+ s)!

(d2 − p− 1)!

=− (p− s)(d2 − (p− s))
(s+ 1)(d1 − 1− s)

(−1)s

s!

p!

(p− s)!
(d1 − 1− s)!

(d1 − 1)!

(d2 − p− 1 + s)!

(d2 − p− 1)!

=− (p− s)(d2 − (p− s))
(s+ 1)(d1 − 1− s)

α
(p)
d1,d2

(s).
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We obtain

Ω.v(p) =

p∑
s=0

α
(p)
d1,d2

(s)Ω.(vs ⊗ v′p−s)

=

p∑
s=0

α
(p)
d1,d2

(s)
{1

2
(d1 − 1− 2s)(d2 − 1− 2(p− s))(vs ⊗ v′p−s)

+ s(d1 − s)(vs−1 ⊗ v′p−s+1) + (p− s)(d2 − (p− s))(vs+1 ⊗ v′p−s−1)
}

=

p∑
s=0

{1

2
α

(p)
d1,d2

(s)(d1 − 1− 2s)(d2 − 1− 2(p− s))(vs ⊗ v′p−s)

− (p− s+ 1)(d2 − p− 1 + s)α
(p)
d1,d2

(s− 1)(vs−1 ⊗ v′p−s+1)

− (s+ 1)(d1 − 1− s)α(p)
d1,d2

(s+ 1)(vs ⊗ v′p−s)
}

=

p∑
s=0

α
(p)
d1,d2

(s)
{1

2
(d1 − 1− 2s)(d2 − 1− 2(p− s))

− (p− s)(d2 − p+ s)− s(d1 − s)
}

(vs ⊗ v′p−s)

=

(
1

2
(d1 − 1)(d2 − 1) + p2 + p(1− d1 − d2)

) p∑
s=0

α
(p)
d1,d2

(s)(vs ⊗ v′p−s)

=λi(p)v
(p), and

λi(p) =
1

2
(d1 − 1)(d2 − 1) + p2 + p(1− d1 − d2).

Now the monodromy generator can be written as

M−1
γ1 |Vi(p) = q−λi(p)τ−1

Vd,Vd
|Vi(p) = (−1)pq−

1
2

(d1−1)(d2−1)−p2−p(1−d1−d2)idVi(p) ,

and the braid group representation associated to the solutions of KZ(sl2) is

ρKZ2 : B2 → Aut(V ⊗2
d ), ρKZ2 : σ1 7→M−1

γ1 .

5.5 Solutions of the KZ-equations

When N > 2, solving the KZ-equations for sl2 becomes more difficult. How-
ever, in analogy with the two-point case we have the solutions proportional
to the highest weight vector u0 := v0⊗· · ·⊗ v0 ∈ Vd1 ⊗· · ·⊗VdN of the form

Ψ0(z1, . . . , zN ) =
∏

1≤i<j≤N
(zi − zj)

µiµj
2κ u0,

where we use the obvious notation for the basis vectors. Notice however that
the vectors v0 ∈ Vdi in different tensor components correspond to represen-
tations of possibly different dimensions. The proof that Ψ0 defines a solution
of KZ will be given in short; see proposition 5.9.
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Denote by W := Vd1 ⊗· · ·⊗VdN and let µi ∈ C be the highest weights in
Vdi , that is di = µi + 1, i = 1, . . . , N. We want to find solutions φ : YN →W
of KZ(sl2). Consider first the easiest case, namely the solution proportional
to the highest weight vector u0 = v0⊗· · ·⊗v0 ∈W of weight

∑N
i=1 µi. Notice

that u0 is indeed a highest weight vector in W since

h.u0 = ∆(N)(h)u0 =

N∑
i=1

v0 ⊗ · · · ⊗ h.v0 ⊗ · · · ⊗ v0 =

N∑
i=1

µiu0 and

e.u0 = ∆(N)(e)u0 =
N∑
i=1

v0 ⊗ · · · ⊗ e.v0 ⊗ · · · ⊗ v0 = 0.

The action of the symmetric invariant tensor is

Ωiju0 = (
1

2
h⊗ h+ e⊗ f + f ⊗ e)iju0 = (

1

2
h⊗ h+ 0)iju0 =

µiµj
2

u0

for all i, j = 1, . . . , N.
If φ : YN →W is a solution of the form

φ(z1, . . . , zN ) = ψ(z1, . . . , zN )u0,

where ψ : YN → C is analytic, then the equation KZ(sl2) for ψ reads

∂

∂zi
ψ(z1, . . . , zN ) =

1

2κ

∑
j 6=i

µiµj
zi − zj

ψ(z1, . . . , zN ).

Analogously to the two-point case we get the following solutions of KZ(sl2).

Proposition 5.9. The multivalued function Ψ0 : YN →W,

Ψ0(z1, . . . , zN ) := ψ0(z1, . . . , zN )u0,

where
ψ0(z1, . . . , zN ) =

∏
1≤i<j≤n

(zi − zj)
µiµj
2κ ,

is a solution of KZ(sl2) taking values in the one dimensional subspace of
highest weight vectors of W of weight

∑N
i=1 µi.

Proof. By direct computation, the function ψ0 satisfies

∂

∂zi
ψ0(z1, . . . , zN ) =

1

2κ

∑
j 6=i

µiµj
zi − zj

ψ0(z1, . . . , zN ).
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Remark. We denote by Sol(Hu0) the space of solutions of KZ(sl2) taking
values in the one dimensional subspace Hu0 ⊂ W of highest weight vectors
of weight

∑N
i=1 µi. Notice that Sol(Hu0) is one dimensional, and spanned by

Ψ0.
We also denote by Sol(Wu0) the space of solutions of KZ(sl2) taking

values in the submodule Wu0 ⊂W generated by the vector u0. By corollary
5.2 a basis

{fk.Ψ0}
dim(Wu0 )−1

k=0

for Sol(Wu0) is obtained by repeated action of f ∈ sl2.

5.5.1 Solutions of KZ in Vd1 ⊗ Vd2 ⊗ Vd3
Since for representations of Lie algebras the natural isomorphism of tensor
products

(V ⊗W )⊗ U ∼= V ⊗ (W ⊗ U)

is an isomorphism of representations, we can use proposition 4.16 repeatedly
to obtain a direct sum decomposition of Vd1 ⊗ Vd2 ⊗ Vd3 into irreducible
sl2-modules.

Furthermore, by Schur’s lemma 4.10 the operator Ωij shuffles the compo-
nents of the same dimension of the direct sum. Recall that by the subscript
ij, i, j ∈ {1, 2, 3}, we mean the operator acting on the i:th and j:th compo-
nent of the tensor product Vd1 ⊗ Vd2 ⊗ Vd3 .

We consider first solutions of KZ(sl2) taking values in the general space
Vd1 ⊗ Vd2 ⊗ Vd3 , where the dimensions d1, d2, d3 might be different. For
studying the monodromy representation of the braid group B3 we need to
take d1 = d2 = d3 in order the action of S3 on Vd1 ⊗ Vd2 ⊗ Vd3 to be well
defined.

The following construction is presented in [Var95] and [EFK98]. Fix num-
bers κ ∈ C and m1,m2,m3 ∈ C, and consider the multivalued holomorphic
function

lz1,z2,z3(w) :=
∏

1≤i<j≤3

(zi − zj)
mimj

2κ

3∏
i=1

(w − zi)−
mi
κ ,

defined on C \ {z1, z2, z3}. Define the multivalued holomorphic one-forms on
C \ {z1, z2, z3} by

ηi := lz1,z2,z3(w)
dw

w − zi
,

i = 1, 2, 3. We observe that

dlz1,z2,z3(w) =

3∑
i=1

−mi

κ

dw

w − zi
lz1,z2,z3(w) = −1

κ

3∑
i=1

miηi,
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which means that the form
∑3

i=1miηi ∈ Ω1(C \ {z1, z2, z3}) is exact. Con-
sider then the integrals

Ik :=

∫
Γz1,z2,z3

ηk,

where Γz1,z2,z3 is the line segment between za and zb shown in the following
figure and za, zb are any two of the points z1, z2, z3.

zb

∼zbza
za

Changing the path of integration to the closed Pochammer contour, we
see similarly as in chapter 2 that

3∑
k=1

mkIk =

∫
Γz1,z2,z3

3∑
k=1

mkηk = −κ
∫

Γz1,z2,z3

dlz1,z2,z3(w) = 0. (8)

By Caychy’s theorem of complex integrals (see [Rud87]) the value of Ik is
homotopy invariant with respect to the path of integration. Now the integrals
Ik are actually functions of the complex variables z1, z2, z3, and we may
consider their partial derivatives in these variables. Define the holomorphic
function I := (I1, I2, I3) : Y3 → C3, where

Y3 = {(z1, z2, z3) ∈ C3} \
⋃
i<j

{zi = zj}.

By direct computation we get the following identity.

Proposition 5.10. I(z1, z2, z3) satisfies the following system of linear partial
differential equations

∂

∂zi
I(z1, z2, z3) =

1

κ

∑
j 6=i

Aij
zi − zj

I(z1, z2, z3), (9)

i = 1, 2, 3, where the matrix Aij = ((Aij)kl)k,l=1,2,3, i, j = 1, 2, 3, has the
components

(Aij)kk =
mimj

2
for k /∈ {i, j},

(Aij)ii =
mimj

2
−mj , (Aij)jj =

mimj

2
−mi,

(Aij)ij = mj , (Aij)ji = mi,

the other components being zero.
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Proof. We compute one of the partial derivatives of I; the others are similar.
First,

∂

∂z2
η3 = lz1,z2,z3(w)

(−m1m2
2κ

z1 − z2
+

m2m3
2κ

z2 − z3
+

m2
κ

w − z2

)
dw

w − z3

=− m1m2

2κ(z1 − z2)
η3 +

m2m3

2κ(z2 − z3)
η3 +

m2

κ(z2 − z3)
(η2 − η3),

which implies

∂

∂z2
I3 =

m2

κ(z2 − z3)
I2 +

(
− m1m2

2κ(z1 − z2)
+
m2(m3 − 2)

2κ(z2 − z3)

)
I3

=
m2

κ(z2 − z3)
I2 +

(
m1m2

2κ(z2 − z1)
+
(m2m3

2
−m2

) 1

κ(z2 − z3)

)
I3.

Above we used the relation

1

(w − z2)

1

(w − z3)
=

1

(z2 − z3)

1

(w − z2)
+

1

(z3 − z2)

1

(w − z3)
.

Next we will apply the previous results to obtain a new solution of KZ(sl2)
in W = Vd1 ⊗ Vd2 ⊗ Vd3 . By proposition 5.1 it suffices to find solutions
(pointwise) proportional to the highest weight vectors of W, which are the
highest weight vectors corresponding to the components of the direct sum
decomposition.

Recall that we denote by µ1, µ2, µ3 ∈ C the highest weights of the sl2-
modules Vd1 , Vd2 , Vd3 , respectively. Recall also that in proposition 5.9 we
found the solution Ψ0 : Y3 →W of the form

Ψ0(z1, z2, z3) = ψ0(z1, z2, z3)u0,

where
ψ0(z1, z2, z3) =

∏
1≤i<j≤3

(zi − zj)
µiµj
2κ .

This is the easiest case, namely a solution proportional to the highest weight
vector u0 = v0 ⊗ v0 ⊗ v0 ∈W of weight µ1 + µ2 + µ3.

Consider then solutions (pointwise) proportional to highest weight vec-
tors inW of weight µ1 +µ2 +µ3−2. Denote by fk the element f ∈ sl2 acting
on the k:th component of a vector v ∈W.

Lemma 5.11. Any highest weight vector of weight µ1 + µ2 + µ3 − 2 in W
can be written as

u
(a1,a2,a3)
1 := a1v1 ⊗ v0 ⊗ v0 + a2v0 ⊗ v1 ⊗ v0 + a3v0 ⊗ v0 ⊗ v1 =

3∑
k=1

akfku0,
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where the coefficients a1, a2, a3 ∈ C satisfy

3∑
k=1

µkak = 0.

In particular, the subspace of W spanned by highest weight vectors of weight
µ1 + µ2 + µ3 − 2 is two dimensional.

Proof. Firstly,

h.u
(a1,a2,a3)
1 = (µ1 + µ2 + µ3 − 2)a1v1 ⊗ v0 ⊗ v0

+ (µ1 + µ2 + µ3 − 2)a2v0 ⊗ v1 ⊗ v0 + (µ1 + µ2 + µ3 − 2)a3v0 ⊗ v0 ⊗ v1

= (µ1 + µ2 + µ3 − 2)u
(a1,a2,a3)
1 ,

and secondly,

e.u
(a1,a2,a3)
1 = a1µ1v0 ⊗ v0 ⊗ v0 + a2µ2v0 ⊗ v0 ⊗ v0 + a3µ3v0 ⊗ v0 ⊗ v0

=

(
3∑

k=1

µkak

)
u0 = 0 if and only if

3∑
k=1

µkak = 0.

Because two of the coefficients can be chosen freely, the space is two dimen-
sional.

Next we will show that if we let the coefficients depend on the complex
variables z1, z2, z3, we obtain a solution of KZ(sl2).

Lemma 5.12. Let Aij be the matrices of proposition 5.10. Then

(Aij)kl = (Ωij)kl

for all i, j, k, l ∈ {1, 2, 3}, where (Ωij)kl are the matrix elements of the oper-
ator Ωij acting on the basis {f1u0, f2u0, f3u0}.

Proof. The proof is a direct computation using the action of sl2 stated in
theorem 4.13. For instance, we compute the operator Ω23,

Ω23.(v1 ⊗ v0 ⊗ v0) =
µ2µ3

2
v1 ⊗ v0 ⊗ v0,

Ω23.(v0 ⊗ v1 ⊗ v0) =
(µ2 − 2)µ3

2
v0 ⊗ v1 ⊗ v0 + µ2v0 ⊗ v0 ⊗ v1,

Ω23.(v0 ⊗ v0 ⊗ v1) =
µ2(µ3 − 2)

2
v0 ⊗ v0 ⊗ v1 + µ3v0 ⊗ v1 ⊗ v0,

whence

Ω23 =


µ2µ3

2 0 0

0 (µ2−2)m3

2 µ3

0 µ2
µ2(µ3−2)

2
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We have hence proved the following proposition. In this case the symbol
P denotes the path Γz1,z2,z3 of integration. Recall that, as in (8), we may
vary the complex variables z1, z2, z3 infinitesimally, thinking Γz1,z2,z3 as the
Pochammer contour. The notation P is motivated by the fact that there are
also other solutions for KZ(sl2) of integral form, corresponding to highest
weight vectors of lower weights. In treatment of these we will use similar
notation.

Proposition 5.13. The multivalued function Ψ
(P)
1 : Y3 →W,

Ψ
(P)
1 (z1, z2, z3) :=

3∑
k=1

I
(P)
k (z1, z2, z3)fku0,

where

I
(P)
k (z1, z2, z3) =

∫
P

∏
1≤i<j≤3

(zi − zj)
µiµj
2κ

3∏
i=1

(w − zi)−
µi
κ

dw

w − zk
,

is a solution of KZ(sl2) taking values in the two dimensional subspace of
highest weight vectors of W of weight µ1 +µ2 +µ3−2, given by lemma 5.11.

Remark. Notice that dimension of the space Sol(Hu1) of solutions of the form
Ψ

(P)
1 is at most two, which follows from lemma 5.11. Actually, if κ /∈ Q, a

basis of Sol(Hu1) is obtained by taking two homologically different paths
of integration for the coefficients I(P)

k , for example the paths Γ
(1,2)
z1,z2,z3 and

Γ
(2,3)
z1,z2,z3 between the points z1, z2, and z2, z3, respectively. The solutions

corresponding to these paths of integration are linearly independent, which
can be seen while computing the monodromy, similarly as in section 2.5 for
the hypergeometric equation.

We also note that by corollary 5.2 a basis of the space Sol(Wu1) of so-
lutions taking values in the submodule Wu1 ⊂ W generated by the highest
weight vectors ofW of weight µ1 +µ2 +µ3−2 is obtained by repeated action
of f ∈ sl2.

The solutions (pointwise) proportional to highest weight vectors of lower
weights are considered in the next section, together with a general number
of tensor components in the sl2-module W.

5.5.2 Solutions of KZ in Vd1 ⊗ · · · ⊗ VdN
Following the same lines as in the previous section, let µi = di − 1 be the
highest weights of the irreducible sl2-modules Vdi , i = 1, . . . , N, κ ∈ C, and
let u0 = v0 ⊗ · · · ⊗ v0 be the highest weight vector of W := Vd1 ⊗ · · · ⊗ VdN
of weight

∑N
i=1 µi. Let z1, . . . , zN ∈ C be fixed distinct points, and write
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z = (z1, . . . , zN ) ∈ YN . Define ψ1 : YN → C by

ψ1(z, w) =
N∏
i=1

(w − zi)−
µi
κ .

Let P : [0, 1]→ C \ {z1, . . . , zN} be a loop such that

t 7→ ψ1(z,P(t))

is a well defined continuous complex function on [0, 1] and takes the same
values in the end points of the path P, that is

ψ1(z,P(0)) = ψ1(z,P(1)).

An example of this kind of loop is the Pochammer contour, which is not
homotopically trivial. These assumptions on P guarantee that the following
integral is well defined, and that the boundary terms sum up to zero in partial
integration, when considering the differential operator of the KZ-equations
acting on the integral.

Define the multivalued function Ψ
(P)
1 : YN →W by

Ψ
(P)
1 (z) := ψ0(z)

∫
P
ψ1(z, w)

N∑
k=1

dw

w − zk
fku0,

where fk denotes the element f ∈ sl2 acting on the k:th component of a
vector v ∈W. Assume that a continuous branch of t 7→ ψ1(z,P(t)) on P has
been chosen so that the integral is well defined. It is important to notice
that the value of the function Ψ

(P)
1 does not depend on this choice except

up to a “phase factor“.
We are ready to state the generalisation of proposition 5.13.

Proposition 5.14. Let

ψ0(z) =
∏

1≤i<j≤N
(zi − zj)

µiµj
2κ , ψ1(z, w) =

N∏
i=1

(w − zi)−
µi
κ ,

and let P : [0, 1] → C \ {z1, . . . , zN} be a loop such that for a fixed point
z = (z1, . . . , zN ) ∈ YN the map t 7→ ψ1(z,P(t)) is a well defined complex
function on [0, 1] satisfying ψ1(z,P(0)) = ψ1(z,P(1)). Then the multivalued
function Ψ(P) : YN →W,

Ψ
(P)
1 (z) := ψ0(z)

∫
P
ψ1(z, w)

N∑
k=1

dw

w − zk
fku0

is a solution of KZ(sl2) taking values in the subspace of highest weight vectors
of W of weight

∑N
i=1 µi − 2.
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Proof. For convenience, introduce the following multivalued operator func-
tions.

Ti(z, w) := ψ1(z, w)
fi

w − zi
, i = 1, . . . , N,

Y (z, w) :=

N∑
i=1

Ti(z, w),

H(z, w) :=
N∑
i=1

µi − hi
w − zi

.

Then by direct computation we obtain the following relation, where [·, ·]
denotes the commutator of operators, that is [A,B] = AB −BA,

∂

∂zi
Y −

[1

κ

∑
j 6=i

Ωij

zi − zj
, Y
]

=
1

κ
Y
µi − hi
w − zi

− 1

κ
TiH −

∂

∂w
Ti.

We can now write

Ψ
(P)
1 (z) = ψ0(z)

∫
P
ψ1(z, w)

N∑
k=1

dw

w − zk
fku0 = ψ0(z)

∫
P
Y (z, w)u0dw.

Consider the KZ-operator

Di :=
∂

∂zi
− 1

κ

∑
j 6=i

Ωij

zi − zj

acting on Ψ
(P)
1 . Since by proposition 5.9 the function ψ0u0 is annihilated by

the KZ-operator, we obtain

DiΨ(P)
1 (z) = Di

(
ψ0(z)

∫
P
Y (z, w)u0dw

)
=

∫
P
Di
(
ψ0(z)Y (z, w)

)
u0dw

=

∫
P

(
Y (z, w)Diψ0(z)u0 + ψ0(z)DiY (z, w)u0

)
dw =

∫
P
ψ0(z)DiY (z, w)u0dw

=

∫
P

(
DiY (z, w)− Y (z, w)Di

)
ψ0(z)u0dw = ψ0(z)

∫
P

[Di, Y (z, w)]u0dw

= ψ0(z)

∫
P

[ ∂
∂zi
− 1

κ

∑
j 6=i

Ωij

zi − zj
, Y (z, w)

]
u0dw

= ψ0(z)

∫
P

( ∂

∂zi
Y (z, w)−

[1

κ

∑
j 6=i

Ωij

zi − zj
, Y (z, w)

])
u0dw.

Using the above relation and the fact that hiu0 = µiu0 we obtain

DiΨ(P)
1 (z) = ψ0(z)

∫
P
− ∂

∂w
Ti(z, w)u0dw.
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The assertion follows using the assumptions

ψ1(z,P(0)) = ψ1(z,P(1)), P(0) = P(1)

on the path of integration P, which imply

ψ0(z)

∫
P
− ∂

∂w
Ti(z, w)u0dw

=− ψ0(z)(Ti(z,P(1))− Ti(z,P(0)))u0

=− ψ0(z)
(
ψ1(z,P(1))

fi
P(1)− zi

− ψ1(z,P(0))
fi

P(0)− zi

)
u0 = 0.

Next we will study the solutions (pointwise) proportional to highest
weight vectors of lower weights. The weights are eigenvalues of h ∈ sl2,
and they are of the form

N∑
i=1

µi − 2l.

We call the number l the level of the solution; we have already found the
solutions corresponding to levels zero and one. Write w = (w1, . . . , wl) ∈ Cl
and dw = dw1 ∧ · · · ∧ dwl, and fix a point z = (z1, . . . , zN ) ∈ YN .

Define the complex manifold

Yz,l := Cl \

⋃
i<j

{wi = wj} ∪
⋃
i,j

{wi = zj}


with holomorphic structure inherited from Cl. Define also the multivalued
holomorphic differential l-form ηz,l by

ηz,l :=
∏

1≤i<j≤l
(wi − wj)

2
κ

∏
j,k

(wj − zk)−
µk
κ

l∏
i=1

N∑
k=1

fk
wi − zk

dw.

Notice that ηz,l is operator valued, meaning that its values act on the vector
spaceW.We can now express a solution of KZ(sl2) corresponding to arbitrary
level l as follows.

Suppose P is an l-dimensional cohomologically closed surface in the sense
that the boundary terms in the following integration add up to zero after
applying the KZ-operator as in the proof of proposition 5.14. The reader
may find in [EFK98] a rigorous inspection of the conditions that P needs to
satisfy.
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Proposition 5.15. The multivalued function Ψ
(P)
l : YN →W,

Ψ
(P)
l (z) := ψ0(z)

∫
P
ηz,lu0,

where
ψ0(z) =

∏
1≤i<j≤N

(zi − zj)
µiµj
2κ ,

ηz,l =
∏

1≤i<j≤l
(wi − wj)

2
κ

∏
j,k

(wj − zk)−
µk
κ

l∏
i=1

N∑
k=1

fk
wi − zk

dw,

is a solution of KZ(sl2) taking values in the subspace of highest weight vectors
of W of weight

∑N
i=1 µi − 2l.

Proof. The idea of the proof is similar to the proof of proposition 5.13,
although this general case needs much more computations. We omit the
proof and refer to [EFK98], section 4.4.

5.6 Monodromy of the KZ-equations

Now that we have found solutions of KZ(sl2) we can finally compute their
monodromy. We consider as examples the simplest cases, corresponding to
the solutions Ψ0 and Ψ

(P)
1 .Moreover, we introduce a recursion which enables

us to find a general formula for the monodromy of any solution of the form
of proposition 5.15.

5.6.1 Monodromy of Ψ0 in Vd ⊗ Vd ⊗ Vd

Let q = e
πi
κ . Since

(τVd,Vd)i,i+1(u0) = (τVd,Vd)i,i+1(v0 ⊗ v0 ⊗ v0) = u0

for i = 1, 2, in view of section 5.4 it is clear that the monodromy action on
the solution Ψ0 : Y3 →W,

Ψ0(z) =
∏

1≤i<j≤3

(zi − zj)
µiµj
2κ u0,

z = (z1, z2, z3) ∈ Y3, of proposition 5.9, is of the form

M−1
γzi,zi+1

: Ψ0(z) 7→ e−πi
µiµi+1

2κ Ψ0(z) = q−
µiµi+1

2 Ψ0(z),

where γzi,zi+1 : [0, 1] → Y3 is a half-loop exchanging the points zi and zi+1

counterclockwise. Notice that γzi,zi+1 represents a loop in C3, and the homo-
topy classes of the loops γz1,z2 and γz2,z3 correspond to the inverses of the
braid group generators σ1, σ2 ∈ B3, respectively. Recall that the monodromy
group is independent of the choice of a base point for the fundamental group
of C3 because C3 is connected in the quotient topology.
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corresponds to
r = 1

r = 0

1 2 3

σ−11

Im

z1

z3
Re

γz1,z2

z2

Figure 10: A loop in C3

Recall that Ψ0 ∈ Sol(Hu0) takes values in the subspace Hu0 ⊂ W of
highest weight vectors of weight 3(d − 1), and that a basis for the space
Sol(Wu0) of solutions taking values in the submodule Wu0 ⊂ W generated
by u0 can be obtained by repeated action of f ∈ sl2. Similarly as in section
5.4, since the tensor flip (τVd,Vd)i,i+1 is a morphism of sl2-modules for i = 1, 2,
and the direct sum decomposition of Vd⊗Vd⊗Vd contains only one component
of dimension dim(Wu0), by Schur’s lemma 4.10 we have that

(τVd,Vd)i,i+1|Wu0
= idWu0

.

The monodromy action corresponding to the solution Ψ0 can now be written
as

M−1
γzi,zi+1

|Wu0
= q−

µiµi+1
2 idWu0

.

Remark. The symmetric invariant tensor Ω = 1
2h⊗h+ e⊗ f + f ⊗ e acts on

Wu0 as a scalar,
Ωi,i+1|Wu0

=
µiµi+1

2
idWu0

for i = 1, 2. Notice in particular that its eigenvalues appear in the exponent
of the quantum deformation parameter q.

5.6.2 Monodromy of Ψ
(P)
1 in V2 ⊗ V2 ⊗ V2

The monodromy action on the integral solutions of the form Ψ
(P)
1 of propo-

sition 5.13 is more complicated to compute. We will use the “contour de-
formation“ method as in section 2.5 for the hypergeometric equation HGE.
Actually, the equation KZ(sl2) for level one solutions Ψ

(P)
1 (pointwise) pro-

portional to highest weight vectors of weight µ1 +µ2 +µ3−2 can be reduced
to HGE for which the monodromy is already computed. However, as we
want to study the relationship of the monodromy of the KZ-equations and
the braid group representation defined by Uq(sl2)[

√
K], we shall compute the

monodromy explicitly in the simplest nontrivial case d1 = d2 = d3 = d = 2.
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By repeated use of proposition 4.16 (Clebsch-Gordan) we obtain the di-
rect sum decomposition

W = V2 ⊗ V2 ⊗ V2
∼= (V1 ⊕ V3)⊗ V2

∼= V4 ⊕ V2 ⊕ V2,

where the highest weight vectors are

u0 = v0 ⊗ v0 ⊗ v0

of weight 3, and two linearly independent highest weight vectors of weight
1, which by lemma 5.11 are of the form

u1 = a1v1 ⊗ v0 ⊗ v0 + a2v0 ⊗ v1 ⊗ v0 + a3v0 ⊗ v0 ⊗ v1 =
3∑

k=1

akfku0,

where the coefficients satisfy
∑3

k=1 ak = 0.
Recall that unless κ ∈ Q, two linearly independent solutions of the form

suggested by proposition 5.13 are obtained for example by taking two homo-
logically different paths of integration for the coefficients Ik, namely Γ

(1,2)
z1,z2,z3

between the points z1, z2, and Γ
(2,3)
z1,z2,z3 between the points z2, z3. The lin-

ear independence of the solutions of KZ(sl2) so obtained can be seen after
computing the monodromy.

It turns out that the integration surfaces P of solutions of KZ(sl2) of the
form of proposition 5.15 associated to level l correspond to linear combina-
tions of non-intersecting families of loops with l members [FW91]. Hence
it is convenient to first consider a suitable complex vector space consisting
of non-intersecting families of loops on C \ {z1, . . . , zN}, with a basis whose
monodromy is straightforward to compute. We shall next introduce this kind
of families of loops, and see that if the integration surface P can be written
as a linear combination of elements of this type then we have an explicit
formula for the monodromy. Moreover, it can actually be shown that any
admissible integration surface P in the sense of proposition 5.15 is this kind
of a linear combination. The proof and more details about this method can
be found in [EFK98] and [FW91].

Before proving the general result, we consider the case of the one dimen-
sional surface, that is the loop P : [0, 1] → C \ {z1, z2, z3}, in the solution
Ψ

(P)
1 : Y3 → V2 ⊗ V2 ⊗ V2,

Ψ
(P)
1 (z1, z2, z3) =

3∑
k=1

∫
P

∏
1≤i<j≤3

(zi − zj)
µiµj
2κ

3∏
i=1

(w − zi)−
µi
κ

dw

w − zk
fku0,

where P is either Γ
(1,2)
z1,z2,z3 or Γ

(2,3)
z1,z2,z3 . However, we need first to make the

general definition of the suitable non-intersecting families of loops.
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Definition 5.16. Fix a point z = (z1, . . . , zN ) ∈ YN so that

Re(z1) < . . . < Re(zN ).

Define Pj1,...,jN as a family of non-intersecting loops with a fixed base point
b ∈ R, such that the following conditions hold.

(i) The base point satisfies b < Re(z1).

(ii) For all i = 1, . . . , N there are ji nested loops around the point zi
counterclockwise, and these loops do not enclose any other point zj .

(iii) The loops intersect only at the base point b.

(iv) If 1 ≤ i < k ≤ N and γi, γk ∈ Pj1,...,jN are loops around the different
points zi, zk ∈ C, parametrized as γi, γk : [0, 1]→ C \ {z1, . . . , zN}, and
t, s ∈ (0, 1) such that Re(γi(t)) = Re(γk(s)), then

Im(γi(t)) > Im(γk(s)).

We call the number l =
∑N

i=1 ji the level of Pj1,...,jN . The families Pj1,...,jN
can be thought of as l-surfaces on Yz,l, and loops around different points
zi correspond to different integration variables wj when integrating the l-
forms ηz,l of proposition 5.15 over Pj1,...,jN . Figure 11 shows how the families
Pj1,...,jN look like for N = 5. The star in the figure indicates the point where
the branch of the integrand is chosen, such that the integrand is positive and
real at that point.

z5

b

z1 z2 z3 z4

Figure 11: P1,2,0,2,0

Since we are interested in representations of the braid group B3, we will
consider action of the half-loop

γz1,z2 : s 7→
((

z1 + z2

2

)
+ eπis

(
z1 − z2

2

)
,

(
z1 + z2

2

)
− eπis

(
z1 − z2

2

)
, z3

)
exchanging the points z1 and z2 counterclockwise in Y3. Recall that γz1,z2
represents a loop in C3, and corresponds to the inverse of the braid group
generator σ1 ∈ B3. We will keep the highest weights µ1, µ2, µ3 in the com-
putations; for the case d1 = d2 = d3 = d = 2 they are µ1 = µ2 = µ3 = 1.
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First we want to express the contours Γ
(1,2)
z1,z2,z3 and Γ

(2,3)
z1,z2,z3 in terms of

the families Pj1,j2 , where j1, j2 ≥ 0. Motivated by the claim that level one
solutions correspond to linear combinations of non-intersecting families of
loops with only one member, we consider the elements P1,0,0, P0,1,0, and
P0,0,1. We consider the integrals

I
(P)
k (z) =

∫
P

∏
1≤i<j≤3

(zi − zj)
µiµj
2κ

3∏
i=1

(w − zi)−
µi
κ

dw

w − zk

z = (z1, z2, z3) ∈ Y3, P ∈ {Γ(1,2)
z1,z2,z3 ,Γ

(2,3)
z1,z2,z3}, of proposition 5.13 for any

index k = 1, 2, 3, written as linear combinations of integrals over the families
P1,0,0, P0,1,0, and P0,0,1. The idea is similar to the “contour deformation“
method in chapter 2 for integral solutions of the hypergeometric equation.
Write optimistically I

(Γ
(1,2)
z1,z2,z3

)

k (z) = αI
(P1,0,0)
k (z) + βI

(P0,1,0)
k (z)

I
(Γ

(2,3)
z1,z2,z3

)

k (z) = α′I
(P0,1,0)
k (z) + β′I

(P0,0,1)
k (z),

where α, β, α′, β′ ∈ C. With a slight abuse of notation, we shall write the
above equations only for the paths of integration, that is{

Γ
(1,2)
z1,z2,z3 = αP1,0,0 + βP0,1,0

Γ
(2,3)
z1,z2,z3 = α′P0,1,0 + β′P0,0,1,

and consider all the indices k = 1, 2, 3 at the same time. The coefficients
α, β, α′, β′ ∈ C will be the same for any k. Figures 12 and 13 illustrate the
above equations. Notice that the integrals I(P)

k (z) are nothing but coefficient
functions of the solution

Ψ
(P)
1 (z) =

3∑
k=1

I
(P)
k (z)fku0

of proposition 5.13 written as a linear combination of fku0 ∈ Vd1⊗Vd2⊗Vd3 ,
k = 1, 2, 3.

We will use pictures to compute the coefficients. The star in the figures
indicates the point where the branch of the integrand is chosen, such that
the integrand is positive and real at that point. Notice that the figures are
sketches only, and in particular the points b, z1, z2 and z3 appear to be in
slightly different positions in different pictures.
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+
z2z1

= × ×α β
z1 z2

z1

Figure 12: Γ
(1,2)
z1,z2,z3 = αP1,0,0 + βP0,1,0

β′= × ×+
z2 z3 z2

z2

z3
α′

Figure 13: Γ
(2,3)
z1,z2,z3 = α′P0,1,0 + β′P0,0,1

Denote q = e
πi
κ . Let us write the elements P1,0,0 and P0,1,0 in a different

manner. They can be drawn as in figures 14 and 15.
From these we see that, if κ /∈ Q, which implies that q is not a root of

unity, the coefficients α, β, α′, β′ must satisfy{
β = q−2µ1−1

qµ2−q−µ2 α

β′ = q−2µ2−1
qµ3−q−µ3 α

′,

and the choice of branch of the integrand along Γ
(1,2)
z1,z2,z3 fixes the value of α,

and choice of branch of the integrand along Γ
(2,3)
z1,z2,z3 fixes the value of α′.

(1− e−
2πiµ1
κ )

z1z1
= × = ×

z1
qµ1(1− q−2µ1)

Figure 14: P1,0,0
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z1

z1

z2
= × +

z2 z2z1
(1− e−

2πiµ2
κ )

e
πiµ2
κ

z1
×= (1− e−

2πiµ2
κ ) + ××

z1 z2 z2
eπi(

µ1
κ

+
µ2
κ

)

×
z1 z2

= +
z1 z2

×qµ2(1− q−2µ2) qµ1

Figure 15: P0,1,0

Next we will compute the monodromy along γz1,z2 . Since we know how to
express the paths of integration Γ

(1,2)
z1,z2,z3 and Γ

(2,3)
z1,z2,z3 as linear combinations

of the elements P1,0,0, P0,1,0 and P0,0,1, we first compute the monodromy of
the integrals I(P)

k , k = 1, 2, 3, over these elements along γz1,z2 . Notice that
the integals I(P)

k with P ∈ {P1,0,0,P0,1,0,P0,0,1} do not necessarily produce
solutions of KZ(sl2) of the form of proposition 5.13. However, we obtain so-
lutions using the expressions for Γ

(1,2)
z1,z2,z3 and Γ

(2,3)
z1,z2,z3 as linear combinations

of the elements P1,0,0, P0,1,0 and P0,0,1, computed above.
Recall that the action of γz1,z2 corresponds to the action of the inverse

of the braid group generator σ1 ∈ B3. Notice also that we are considering
parallel transport in the bundle over the configuration space C3, where the
points

(z1, z2) = γz1,z2(0) and (z2, z1) = γz1,z2(1)

are identified. Another crucial observation is that the rational function 1
w−zk

appearing in the integral I(P)
k is single-valued, and hence does not affect the

monodromy. In particular, the monodromy of I(P)
k is independent of the

index k = 1, 2, 3.

The monodromy of I(P1,0,0)
k is easy (figure 16), resulting

I
(P1,0,0)
k (γz1,z2(1)) = q

µ1µ2
2
−µ2I

(P0,1,0)
k (γz1,z2(0)).

eπi(
µ1µ2
2κ
−µ2

κ
)

z1
z2

σ−1
17→

z2

z1
×

Figure 16: The monodromy of I(P1,0,0)
k
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On the other hand, the monodromy of I(P0,1,0)
k is slightly more compli-

cated. In figure 17 below we have divided the loop after the monodromy
action into two separate loops, and the loop around both of the points z1

and z2 into two loops enclosing only one of the points z1, z2.

eπi(
µ1µ2
2κ
−µ1

κ
−µ2

κ
)

z1

z2
7→
σ−1

1 z2

z1
×

z2

z1

z2

z1
z2= × +eπi(

µ1
κ
−µ2

κ
)

z1

e
πiµ2
κz1

z2
z2

z1 z2
= × + ×eπi(

µ1
κ

+
µ2
κ

)

Figure 17: The monodromy of I(P0,1,0)
k

Combining the above pictures we obtain the result

I
(P0,1,0)
k (γz1,z2(1))

= q
µ1µ2

2
−µ1−µ2

{
− qµ1−µ2I(P0,1,0)

k (γz1,z2(0))

+ qµ1+µ2I
(P0,1,0)
k (γz1,z2(0)) + qµ2I

(P1,0,0)
k (γz1,z2(0))

}
=
(
q
µ1µ2

2 − q
µ1µ2

2
−2µ2

)
I

(P0,1,0)
k (γz1,z2(0)) + q

µ1µ2
2
−µ1I

(P1,0,0)
k (γz1,z2(0))

= q
µ1µ2

2
−µ2(qµ2 − q−µ2)I

(P0,1,0)
k (γz1,z2(0)) + q

µ1µ2
2
−µ1I

(P1,0,0)
k (γz1,z2(0)).

Finally, the monodromy of I(P0,0,1)
k is also easy (figure 18), resulting

I
(P0,0,1)
k (γz1,z2(1)) = q

µ1µ2
2 I

(P0,0,1)
k (γz1,z2(0)).

e
πiµ1µ2

2κ

z1

z3

z2 z2 z1

z37→
σ−1

1

×

Figure 18: The monodromy of I(P0,0,1)

95



Using the monodromy of the elements I(P1,0,0)
k , I

(P0,1,0)
k and I(P0,0,1)

k we
obtain

I
(Γ

(1,2)
z1,z2,z3

)

k (γz1,z2(1))

= αq
µ1µ2

2
−µ2I

(P0,1,0)
k (γz1,z2(0)) + β

{
q
µ1µ2

2
−µ2 (qµ2 − q−µ2) I(P0,1,0)

k (γz1,z2(0))

+ q
µ1µ2

2
−µ1I

(P1,0,0)
k (γz1,z2(0))

}
= αq

µ1µ2
2
−2µ1

{
q−µ2I

(P0,1,0)
k (γz1,z2(0)) +

q−µ1 − qµ1
qµ2 − q−µ2

I
(P1,0,0)
k (γz1,z2(0))

}
,

where we used the relation between the coefficients α and β, and

I
(Γ

(2,3)
z1,z2,z3

)

k (γz1,z2(1))

= α′
{
q
µ1µ2

2
−µ2 (qµ2 − q−µ2) I(P0,1,0)

k (γz1,z2(0)) + q
µ1µ2

2
−µ1I

(P1,0,0)
k (γz1,z2(0))

}
+ β′q

µ1µ2
2 I

(P0,0,1)
k (γz1,z2(0))

= α′
{
q
µ1µ2

2

{
q−µ2

(
qµ2 − q−µ2

)
I

(P0,1,0)
k (γz1,z2(0)) + q−µ1I

(P1,0,0)
k (γz1,z2(0))

}
+

q−2µ2 − 1

qµ3 − q−µ3
I

(P0,0,1)
k (γz1,z2(0))

}
,

where we used the relation between the coefficients α′ and β′.

Recall that our aim is to compute the monodromy of the solution Ψ
(P)
1

of KZ(sl2) in V2 ⊗ V2 ⊗ V2. Hence assume next that µ1 = µ2 = µ3 = 1, and
choose the branch of the integrand along Γ

(1,2)
z1,z2,z3 so that β = 1 and along

Γ
(2,3)
z1,z2,z3 so that β′ = 1. Then the monodromy action of the half-loop γz1,z2

can be written as

I
(Γ

(1,2)
z1,z2,z3

)

k (γz1,z2(1)) = −q−
3
2

{
(I

(P0,1,0)
k (γz1,z2(0))− qI(P1,0,0)

k (γz1,z2(0))
}

=− q−
3
2 I

(Γ
(1,2)
z1,z2,z3

)

k (γz1,z2(0)),

I
(Γ

(2,3)
z1,z2,z3

)

k (γz1,z2(1)) = q
1
2

{
I

(P0,0,1)
k (γz1,z2(0))− qI(P0,1,0)

k (γz1,z2(0))
}

+ q−
1
2

{
I

(P0,1,0)
k (γz1,z2(0))− qI(P1,0,0)

k (γz1,z2(0))
}

= q
1
2 I

(Γ
(2,3)
z1,z2,z3

)

k (γz1,z2(0)) + q−
1
2 I

(Γ
(1,2)
z1,z2,z3

)

k (γz1,z2(0)).

Finally, the monodromy of the solutions

Ψ
(P)
1 (z) =

3∑
k=1

I
(P)
k (z)fku0,
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with P ∈ {Γ(1,2)
z1,z2,z3 ,Γ

(2,3)
z1,z2,z3} reads

Ψ
(Γ

(1,2)
z1,z2,z3

)
1 (γz1,z2(1)) =

3∑
k=1

I
(Γ

(1,2)
z1,z2,z3

)

k (γz1,z2(1))fku0

=
3∑

k=1

−q−
3
2 I

(Γ
(1,2)
z1,z2,z3

)

k (γz1,z2(0))fku0 = −q−
3
2 Ψ

(Γ
(1,2)
z1,z2,z3

)
1 (γz1,z2(0)),

Ψ
(Γ

(2,3)
z1,z2,z3

)
1 (γz1,z2(1)) =

3∑
k=1

I
(Γ

(2,3)
z1,z2,z3

)

k (γz1,z2(1))fku0

=
3∑

k=1

(
q

1
2 I

(Γ
(2,3)
z1,z2,z3

)

k (γz1,z2(0)) + q−
1
2 I

(Γ
(1,2)
z1,z2,z3

)

k (γz1,z2(0))
)
fku0

= q
1
2 Ψ

(Γ
(2,3)
z1,z2,z3

)
1 (γz1,z2(0)) + q−

1
2 Ψ

(Γ
(1,2)
z1,z2,z3

)
1 (γz1,z2(0)),

and we have the monodromy operator Mγz1,z2
: Ψ

(Γ
(1,2)
z1,z2,z3

)
1 7→ −q−

3
2 Ψ

(Γ
(1,2)
z1,z2,z3

)
1

Mγz1,z2
: Ψ

(Γ
(2,3)
z1,z2,z3

)
1 7→ q

1
2 Ψ

(Γ
(2,3)
z1,z2,z3

)
1 + q−

1
2 Ψ

(Γ
(1,2)
z1,z2,z3

)
1 .

Notice that Ψ
(Γ

(1,2)
z1,z2,z3

)
1 is an eigenvector of the monodromy operator Mγz1,z2

but Ψ
(Γ

(2,1)
z1,z2,z3

)
1 is not. Similarly as in section 2.5 for solutions of HGE we

deduce that the solutions associated to Γ
(1,2)
z1,z2,z3 and Γ

(2,3)
z1,z2,z3 are linearly

independent.

We can now write the monodromy operatorMγz1,z2
acting on the (sub)space

of solutions of KZ(sl2) in V2 ⊗ V2 ⊗ V2 as a matrix with respect to the basis

{Ψ0, f.Ψ0, f
2.Ψ0, f

3.Ψ0; Ψ
(Γ

(1,2)
z1,z2,z3

)
1 , f.Ψ

(Γ
(1,2)
z1,z2,z3

)
1 ; Ψ

(Γ
(2,3)
z1,z2,z3

)
1 , f.Ψ

(Γ
(2,3)
z1,z2,z3

)
1 }

where

Ψ0(z1, z2, z3) =
∏

1≤i<j≤3

(zi − zj)
1
2κu0,

Ψ
(Γ

(1,2)
z1,z2,z3

)
1 (z1, z2, z3)

=
3∑

k=1

∫
Γ
(1,2)
z1,z2,z3

∏
1≤i<j≤3

(zi − zj)
µiµj
2κ

3∏
i=1

(w − zi)−
µi
κ

dw

w − zk
fku0,

Ψ
(Γ

(2,3)
z1,z2,z3

)
1 (z1, z2, z3)

=

3∑
k=1

∫
Γ
(2,3)
z1,z2,z3

∏
1≤i<j≤3

(zi − zj)
µiµj
2κ

3∏
i=1

(w − zi)−
µi
κ

dw

w − zk
fku0
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with some fixed choices of branches of the initial values.
The matrix Mγz1,z2

in the above basis reads

Mγz1,z2
=



q
1
2 0 0 0 0 0 0 0

0 q
1
2 0 0 0 0 0 0

0 0 q
1
2 0 0 0 0 0

0 0 0 q
1
2 0 0 0 0

0 0 0 0 −q−
3
2 0 q−

1
2 0

0 0 0 0 0 −q−
3
2 0 q−

1
2

0 0 0 0 0 0 q
1
2 0

0 0 0 0 0 0 0 q
1
2


Recall that this is the monodromy operator corresponding to the inverse of
the braid group generator σ1 ∈ B3. The matrix corresponding to σ1 is the
inverse of Mγz1,z2

, that is

M−1
γz1,z2

=



q−
1
2 0 0 0 0 0 0 0

0 q−
1
2 0 0 0 0 0 0

0 0 q−
1
2 0 0 0 0 0

0 0 0 q−
1
2 0 0 0 0

0 0 0 0 −q
3
2 0 q

1
2 0

0 0 0 0 0 −q
3
2 0 q

1
2

0 0 0 0 0 0 q−
1
2 0

0 0 0 0 0 0 0 q−
1
2


The action of the monodromy operator Mγz2,z3

exchanging the points z2

and z3 is found by a similar computation. The monodromy representation of
the braid group B3 associated to the solutions of KZ(sl2) inW = V2⊗V2⊗V2

is determined by the inverses of these operators, that is,

ρKZ3 : B3 → Aut(V ⊗3
2 ), σ1 7→M−1

γz1,z2
σ2 7→M−1

γz2,z3
.
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5.6.3 The general “contour deformation“ method

Next we introduce the general “contour deformation“ method for solutions
of KZ(sl2) of arbitrary level. Recall the formula for the solutions,

Ψ
(P)
l (z) = ψ0(z)

∫
P
ηz,lu0,

where
ψ0(z) =

∏
1≤i<j≤N

(zi − zj)
µiµj
2κ ,

ηz,l =
∏

1≤i<j≤l
(wi − wj)

2
κ

∏
j,k

(wj − zk)−
µk
κ

l∏
i=1

N∑
k=1

fk
wi − zk

dw,

and P is a suitable l-surface on the manifold

Yz,l = Cl \

⋃
i<j

{wi = wj} ∪
⋃
i,j

{wi = zj}


We notice that the part

l∏
i=1

N∑
k=1

fk
wi − zk

u0

can be written as a linear combination of terms proportional to vectors of
the form

fm1
1 · · · fmNN u0 = vm1 ⊗ · · · ⊗ vmN ∈W,

containing a single-valued rational function rm1,...,mN (z, w) having as a func-
tion of w = (w1, . . . , wl) no poles in Yz,l. Indeed,

l∏
i=1

N∑
k=1

fk
wi − zk

u0 =
∑

m1,...,mN≥0,
∑
imi=l

rm1,...,mN (z, w)fm1
1 · · · fmNN u0

=
∑

m1,...,mN≥0,
∑
imi=l

rm1,...,mN (z, w)vm1 ⊗ · · · ⊗ vmN .

Define the complex valued functions Fm1,...,mN
j1,...,jN

: YN → C by

Fm1,...,mN
j1,...,jN

(z)

:= ψ0(z)

∫
Pj1,...,jN

∏
1≤i<j≤l

(wi − wj)
2
κ

∏
j,k

(wj − zk)−
µk
κ rm1,...,mN (z, w)dw,

where m1, . . . ,mN , j1, . . . , jN ≥ 0 satify
∑N

i=1 ji = l =
∑N

i=1mi.
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We consider the monodromy action of the half-loop exchanging the points
zi and zi+1 counterclockwise, denoted by γzi,zi+1 : [0, 1] → YN , on the func-
tions Fm1,...,mN

j1,...,jN
. The homotopy class of γzi,zi+1 corresponds to the inverse of

the braid group generator σi ∈ BN . Notice that since the complex function
rm1,...,mN (w) is single-valued, the monodromy affects only the part

ψ0(z)

∫
Pj1,...,jN

∏
1≤i<j≤l

(wi − wj)
2
κ

∏
j,k

(wj − zk)−
µk
κ dw

of the function Fm1,...,mN
j1,...,jN

. In particular, the monodromy is independent on
the indices m1, . . . ,mN ≥ 0.

We will compute the monodromy of the functions Fm1,...,mN
j1,...,jN

using the
contour deformation method on the families Pj1,...,jN as in the previous sec-
tion. We will use a slight abuse of notation so that while computing the
monodromy, we denote by Pj1,...,jN also the function Fm1,...,mN

j1,...,jN
for any in-

dices m1, . . . ,mN ≥ 0 satisfying
∑N

i=1mi = l =
∑N

i=1 ji, with the path of
integration Pj1,...,jN . Actually, since we are only interested in the exchange
of two adjacent points, it suffices to consider the action of γz1,z2 on Pj1,j2 .
For this, we shall define some auxiliary families of loops, using the following
figures. All the loops are assumed to be non-intersecting and to have the
same fixed base point b < Re(z1) as the family Pj1,j2 .

Firstly, the action of γz1,z2 on Pj1,j2 can be pictured as in the below figure
19. Secondly, define the auxiliary families of loops called G̃(p)

j1,j2
and Ĝ(p)

j1,j2
by

figures 20 and 21.

z2

j1 loops

j2 loops

b
z1

Figure 19: Mγz1,z2
Pj1,j2
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z1

z2

j1 loops

p loops
j2 loops

b

Figure 20: G̃(p)
j1,j2

j1 loops

b
z1

z2

j2 loops

p loops

Figure 21: Ĝ(p)
j1,j2

Taking into account the resulting “phase factors“ from the function Fm1,...,mN
j1,...,jN

we can write the action of γz1,z2 on Pj1,j2 as

Mγz1,z2
Pj1,j2 = q

µ1µ2
2
−j1µ2 G̃(0)

j1,j2
,

where we denote q = e
πi
κ . In order to express Mγz1,z2

Pj1,j2 as a linear combi-
nation of families of non-intersecting loops of the form Pk1,k2 we will compute
the monodromy of the auxiliary families G̃(p)

j1,j2
and Ĝ(p)

j1,j2
.
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Divide the outermost loop in G̃(p)
j1,j2

around z2 into two loops of the fol-
lowing type.

+
z2

z1
z1

z2
z2

z1 ∼

Taking into account the resulting “phase factors“ from the function Fm1,...,mN
j1,...,jN

we obtain the following recursion for G̃(p)
j1,j2

,

G̃(p)
j1,j2

= q2(j1+j2−1)−µ1−µ2 G̃(p+1)
j1,j2−1 − q

2(j2−1−µ2)G̃(p)
j1+1,j2−1.

Similarly, divide the innermost loop in Ĝ(p)
j1,j2

around both z1 and z2 into
two loops of the following type.

+
z2

z1 z2

z2
z1 ∼

Taking into account the resulting “phase factors“ from the function Fm1,...,mN
j1,...,jN

we obtain the following recursion for Ĝ(p)
j1,j2

,

Ĝ(p)
j1,j2

= q−2j2+µ2 Ĝ(p−1)
j1,j2+1 + q−2(j1+j2)+µ1+µ2 Ĝ(p−1)

j1+1,j2
.

Moreover, notice also that if there are no loops around both z1 and z2 in
Ĝ(p)
j1,j2

, we obtain the family Pj2,j1 ,

Ĝ(0)
j1,j2

= Pj2,j1 .

Similarly, if there are no loops around z2 then we have

Ĝ(p)
j1,0

= G̃(p)
j1,0

.

From the recursions it follows that decreasing the indices j2 and p of the
families G̃(p)

j1,j2
and Ĝ(p)

j1,j2
, respectively, we can write

G̃(p)
j1,j2

=

m∑
k=0

αm,kG̃
(p+m−k)
j1+k,j2−m

Ĝ(p)
j1,j2

=

m∑
k=0

βm,kĜ
(p−m)
j1+k,j2+m−k.
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Furthermore, using the recursions we obtain corresponding recursions for
the coefficients αm,k and βm,k. From the equations

G̃(p)
j1,j2

=

m−1∑
k=0

αm−1,kG̃
(p+m−1−k)
j1+k,j2−m+1

=
m−1∑
k=0

αm−1,k

(
q2(j1+k+j2−m)−µ1−µ2 G̃(p+m−k)

j1+k,j2−m

− q2(j2−m−µ2)G̃(p+m−1−k)
j1+k+1,j2−m

)
and

Ĝ(p)
j1,j2

=
m−1∑
k=0

βm−1,kĜ
(p−m+1)
j1+k,j2+m−1−k

=

m−1∑
k=0

βm−1,k

(
q−2(j2+m−k−1)+µ2 Ĝ(p−m)

j1+k,j2+m−k

+ q−2(j1+j2+m−1)+µ1+µ2 Ĝ(p−m)
j1+k+1,j2+m−1−k

)
we see that{

αm,k = q2(j1+k+j2−m)−µ1−µ2αm−1,k − q2(j2−m−µ2)αm−1,k−1

βm,k = q−2(j2+m−k−1)+µ2βm−1,k + q−2(j1+j2+m−1)+µ1+µ2βm−1,k−1.

Solutions of the recursions. In order to solve the recursions deter-
mining the monodromy action of γz1,z2 on Pj1,j2 we present some useful
results concerning the quantum binomial coefficients. Recall that the q-
binomial coefficients are defined by[

n

k

]
q

:=
[n]q!

[k]q![n− k]q!
,

where

[n]q :=
qn − q−n

q − q−1
,

[n]q! := [n]q[n− 1]q · · · [1]q,

and q ∈ C \ {0,±1}.

Proposition 5.17. The q-binomial coefficients satisfy the recursion[
n

k

]
q

= qk
[
n− 1

k

]
q

+ qk−n
[
n− 1

k − 1

]
q

.

103



Proof.[
n

k

]
q

− qk
[
n− 1

k

]
q

− qk−n
[
n− 1

k − 1

]
q

=
[n]q!

[k]q![n− k]q!
− qk [n− 1]q!

[k]q![n− 1− k]q!
− qk−n [n− 1]q!

[k − 1]q![n− 1− (k − 1)]q!

=
[n− 1]q!

[k]q![n− k]q!

(
[n]q − qk[n− k]q − qk−n[k]q

)
=

[n− 1]q!

[k]q![n− k]q!

(
qn − q−n − qk(qn−k − qk−n)− qk−n(qk − q−k)

q − q−1

)
= 0.

Lemma 5.18. Suppose the complex numbers (an,k)n∈N,k=0,...,n satisfy the
recursion

an,k = (An+B
k
+C+)an−1,k + (An−B

k
−C−)an−1,k−1,

where an,k = 0 for k /∈ {0, . . . , n}. Then

an,k =

([
n

k

]
q

A
(n+1)(n−k)

2
+ A

(n+1)k
2

− B
(n−k)k

2
+ B

(k+1)k
2

− Cn−k+ Ck−

)
a0,0,

where q =
√

A+B+

A−
.

Proof. Using proposition 5.17 with q =
√

A+B+

A−
we obtain

an,k
a0,0

=

[
n

k

]
q

A
(n+1)(n−k)

2
+ A

(n+1)k
2

− B
(n−k)k

2
+ B

(k+1)k
2

− Cn−k+ Ck−

=

(
qk
[
n− 1

k

]
q

+ qk−n
[
n− 1

k − 1

]
q

)
·A

(n+1)(n−k)
2

+ A
(n+1)k

2
− B

(n−k)k
2

+ B
(k+1)k

2
− Cn−k+ Ck−

=

[
n− 1

k

]
q

(
A+B+

A−

) k
2

·A
(n+1)(n−k)

2
+ A

(n+1)k
2

− B
(n−k)k

2
+ B

(k+1)k
2

− Cn−k+ Ck−

+

[
n− 1

k − 1

]
q

(
A+B+

A−

) k−n
2

·A
(n+1)(n−k)

2
+ A

(n+1)k
2

− B
(n−k)k

2
+ B

(k+1)k
2

− Cn−k+ Ck−

=
an−1,k

a0,0
An+A

0
−B

k
+B

0
−C

1
+C

0
− +

an−1,k−1

a0,0
A0

+A
n
−B

0
+B

k
−C

0
+C

1
−

=
an−1,k

a0,0
An+B

k
+C+ +

an−1,k−1

a0,0
An−B

k
−C−.

Hence the proposed formula satisfies the recursion, and it is clear that the
solution is unique with a given initial condition a0,0.

From this we get as a special case the following useful result.
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Lemma 5.19.

r−1∏
s=0

(qt+s − q−(t+s)) =
r∑
l=0

(−1)l
[
r

l

]
q

qrt−2lt+2l−r+ 1
2

(r+1)(r−2l),

and conversely,

r∑
l=0

(−1)l
[
r

l

]
q

ql(β−r) = q
1
2
r(β−r)

r−1∏
s=0

(q
1
2

(1−β)+s − q
1
2

(β−1)−s).

Proof. By collecting fixed powers of q we can write

r−1∏
s=0

(qt+s − q−(t+s)) = (qt − q−t)(qt+1 − q−(t+1)) · · · (qt+r−1 − q−(t+r−1))

= q
∑r−1
s=0 t+s + · · ·+ q−

∑r−1
s=0 t+s = qrt

r∑
l=0

cr,lq
−2lt

with suitable coefficients cr,l. We see that cr,l satisfy the recursion

cr,l = qr−1cr−1,l − q1−rcr−1,l−1,

which is of the form of lemma 5.18 with A+ = q, A− = q−1, B+ = 1 = B−,
C+ = q−1, C− = −q.

We will now use lemma 5.18 to solve the recursions{
αm,k = q2(j1+k+j2−m)−µ1−µ2αm−1,k − q2(j2−m−µ2)αm−1,k−1

βm,k = q−2(j2+m−k−1)+µ2βm−1,k + q−2(j1+j2+m−1)+µ1+µ2βm−1,k−1

for the coefficients of the auxiliary families G̃(p)
j1,j2

and Ĝ(p)
j1,j2

.

Proposition 5.20. The recursions{
αm,k = q2(j1+k+j2−m)−µ1−µ2αm−1,k − q2(j2−m−µ2)αm−1,k−1

βm,k = q−2(j2+m−k−1)+µ2βm−1,k + q−2(j1+j2+m−1)+µ1+µ2βm−1,k−1

have the unique solutions{
αm,k = (−1)k

[
m
k

]
q
q−k

2−2j1(k−m)+k(m+µ1−µ2)−m(1−2j2+m+µ1+µ2)

βm,k =
[
m
k

]
q
q−2j1k−k2+k(m+µ1)+m(1−2j2−m+µ2)

Proof. For αm,k, put in lemma 5.18

A+ = A− = q−2, B+ = q2, B− = 1, C+ = q2(j1+j2)−µ1−µ2 , C− = −q2(j2−µ2).
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Then √
q−2q2

q−2
= q, α0,0 = 1

and

αm,k =

[
m

k

]
q

q−(m+1)(m−k)q−(m+1)kq(m−k)kq(2(j1+j2)−µ1−µ2)(m−k)(−q)2(j2−µ2)k

= (−1)k
[
m

k

]
q

q−k
2−2j1(k−m)+k(m+µ1−µ2)−m(1−2j2+m+µ1+µ2).

For βm,k, put in lemma 5.18

A+ = A− = q−2, B+ = q2, B− = 1, C+ = q−2(j2−1)+µ2 ,

C− = q−2(j1+j2−1)+µ1+µ2 .

Then √
q−2q2

q−2
= q, β0,0 = 1

and

βm,k =

[
n

k

]
q

q−(m+1)(m−k)q−(m+1)kq2(m−k)kq(−2(j2−1)+µ2)(m−k)

· q(−2(j1+j2−1)+µ1+µ2)k

=

[
m

k

]
q

q−2j1k−k2+k(m+µ1)+m(1−2j2−m+µ2).

Using the previous proposition we obtain from the expressions

G̃(p)
j1,j2

=
m∑
k=0

αm,kG̃
(p+m−k)
j1+k,j2−m

Ĝ(p)
j1,j2

=
m∑
k=0

βm,kĜ
(p−m)
j1+k,j2+m−k

by taking m = j2 in the first equation and m = p in the second equation the
formulas

G̃(p)
j1,j2

=

j2∑
k=0

αj2,kG̃
(p+j2−k)
j1+k,0

=

j2∑
k=0

(−1)k
[
j2
k

]
q

q−k
2−2j1(k−j2)+k(j2+µ1−µ2)−j2(1−j2+µ1+µ2)G̃(p+j2−k)

j1+k,0
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and

Ĝ(p)
j1,j2

=

p∑
k=0

βp,kĜ
(0)
j1+k,j2+p−k

=

p∑
k=0

[
p

k

]
q

q−2j1k−k2+k(p+µ1)+p(1−2j2−p+µ2)Ĝ(0)
j1+k,j2+p−k.

5.6.4 Monodromy of Ψ
(P)
l in V ⊗Nd

Combining the results obtained in the previous sections we conclude that

G̃(0)
j1,j2

=

j2∑
k=0

αj2,kG̃
(j2−k)
j1+k,0

=

j2∑
k=0

(−1)k
[
j2
k

]
q

q−k
2−2j1(k−j2)+k(j2+µ1−µ2)−j2(1−j2+µ1+µ2)G̃(j2−k)

j1+k,0

=

j2∑
k=0

(−1)k
[
j2
k

]
q

q−k
2−2j1(k−j2)+k(j2+µ1−µ2)−j2(1−j2+µ1+µ2)Ĝ(j2−k)

j1+k,0

=

j2∑
k=0

(−1)k
[
j2
k

]
q

q−k
2−2j1(k−j2)+k(j2+µ1−µ2)−j2(1−j2+µ1+µ2)

·
j2−k∑
l=0

[
j2 − k
l

]
q

q−2(j1+k)l−l2+l(j2−k+µ1)+(j2−k)(1−(j2−k)+µ2)

· Ĝ(0)
j1+k+l,j2−k−l

=

j2∑
k=0

j2−k∑
l=0

(−1)k
[
j2
k

]
q

[
j2 − k
l

]
q

· qj2(2j1−µ1)+k(µ1−2(k+j1+µ2)+3j2−1)+l(µ1−l−2j1+j2−3k)Pj2−k−l,j1+k+l

=

j2∑
m=0

qj2(2j1−µ1)+m(µ1−m−2j1+j2)

[
j2
m

]
q

·

(
m∑
k=0

(−1)k
[
m

k

]
q

qk(−1+2j2−m−2µ2)

)
Pj2−m,j1+m,

where we denoted m = k + l and used the relations

Ĝ(p)
j1,0

= G̃(p)
j1,0

, Ĝ(0)
j1,j2

= Pj2,j1 ,

and [
j2
k

]
q

[
j2 − k
l

]
q

=

[
j2
k

]
q

[
j2 − k
m− k

]
q

=

[
j2
m

]
q

[
m

k

]
q
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Using lemma 5.19 with β = 2j2 − 2µ2 − 1 we further compute the sum over
k

m∑
k=0

(−1)k
[
m

k

]
q

qk(−1+2j2−m−2µ2)

= q
m
2

(2j2−2µ2−1−m)
m−1∏
s=0

(q1+µ2−j2+s − q−1−µ2+j2−s)

= q
m
2

(2j2−2µ2−1−m) [µ2 − j2 +m]q!

[µ2 − j2]q!
(q − q−1)m.

Hence

G̃(0)
j1,j2

=

j2∑
m=0

qj2(2j1−µ1)+m(−2j1+2j2− 3
2
m+µ1−µ2− 1

2
)(q − q−1)m

· [j2]q![µ2 − j2 +m]q!

[m]q![j2 −m]q![µ2 − j2]q!
Pj2−m,j1+m

and

Mγz1,z2
Pj1,j2 = q

µ1µ2
2
−j1µ2 G̃(0)

j1,j2

= q
µ1µ2

2
−j1µ2

j2∑
m=0

qj2(2j1−µ1)+m(−2j1+2j2− 3
2
m+µ1−µ2− 1

2
)(q − q−1)m

· [j2]q![µ2 − j2 +m]q!

[m]q![j2 −m]q![µ2 − j2]q!
Pj2−m,j1+m

=

j2∑
m=0

q2(
µ1
2
−(j1+m))(

µ2
2
−(j2−m))+ 1

2
m(m−1)(q − q−1)m

· [j2]q![µ2 − j2 +m]q!

[m]q![j2 −m]q![µ2 − j2]q!
Pj2−m,j1+m

Recall that the monodromy of Pj1,j2 determines the monodromy of the
functions

Fm1,...,mN
j1,...,jN

(z)

= ψ0(z)

∫
Pj1,...,jN

∏
1≤i<j≤l

(wi − wj)
2
κ

∏
j,k

(wj − zk)−
µk
κ rm1,...,mN (z, w)dw

for m1, . . . ,mN ≥ 0,
∑N

i=1mi = l, that is

Fm1,...,mN
j1,...,jN

(γzi,zi+1(1)) =

ji+1∑
m=0

q2(
µi
2
−(ji+m))(

µi+1
2
−(ji+1−m))+ 1

2
m(m−1)(q − q−1)m

· [ji+1]q![µi+1 − ji+1 +m]q!

[m]q![ji+1 −m]q![µi+1 − ji+1]q!
F
m1,...,mi−1,mi+1,mi,mi+2,...,mN
j1,...,ji−1,ji+1−m,ji+m,ji+2...,jN

(γzi,zi+1(0))
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Suppose P is an admissible l-surface in the sense of proposition 5.15
such that it can be written as a linear combination of families of loops of the
form Pj1,...,jN of level

∑N
i=1 ji = l. Then by linearity the monodromy of the

solution
Ψ

(P)
l (z) = ψ0(z)

∫
P
ηz,lu0

of KZ(sl2) is determined by the monodromy of the components of the form

Ψ
(Pj1,...,jN )

l (z) = ψ0(z)

∫
Pj1,...,jN

ηz,lu0

=
∑

m1,...,mN≥0,
∑
imi=l

Fm1,...,mN
j1,...,jN

(z)fm1
1 · · · fmNN u0

=
∑

m1,...,mN≥0,
∑
imi=l

Fm1,...,mN
j1,...,jN

(z)vm1 ⊗ · · · ⊗ vmN ,

that is

Ψ
(Pj1,...,jN )

l (γzi,zi+1(1))

= ψ0(γzi,zi+1(1))

∫
Pj1,...,jN

ηγzi,zi+1 (1),lu0

=
∑

m1,...,mN≥0,
∑
imi=l

Fm1,...,mN
j1,...,jN

(γzi,zi+1(1))vm1 ⊗ · · · ⊗ vmN

=
∑

m1,...,mN≥0,
∑
imi=l

( ji+1∑
m=0

q2(
µi
2
−(ji+m))(

µi+1
2
−(ji+1−m))+ 1

2
m(m−1)(q − q−1)m

· [ji+1]q![µi+1 − ji+1 +m]q!

[m]q![ji+1 −m]q![µi+1 − ji+1]q!
F
m1,...,mi−1,mi+1,mi,mi+2,...,mN
j1,...,ji−1,ji+1−m,ji+m,ji+2...,jN

(γzi,zi+1(0))
)

· vm1 ⊗ · · · ⊗ vmN .

Notice that these are not in general solutions of KZ(sl2).
Recall that we wanted to obtain a representation of the braid group

BN . Hence, let d1 = · · · = dN = d, whence the highest weights satisfy
µ1 = · · · = µN = µ = d−1. Taking into account the action of the symmetric
group on YN and writing

γzi,zi+1(1) = (z1, . . . , zi−1, zi+1, zi, zi+2, . . . , zN ),

γzi,zi+1(0) = (z1, . . . , zN )
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we obtain in (YN × V ⊗Nd )/SN the monodromy

Ψ
(Pj1,...,jN )

l (γzi,zi+1(1))

= ψ0(γzi,zi+1(1))

∫
Pj1,...,jN

ηγzi,zi+1 (1),lu0

= ψ0(z1, . . . , zi−1, zi+1, zi, zi+2, . . . , zN )

∫
Pj1,...,jN

ηγzi,zi+1 (1),lu0

=
∑

m1,...,mN≥0,
∑
imi=l

( ji+1∑
m=0

q2(
µi
2
−(ji+m))(

µi+1
2
−(ji+1−m))+ 1

2
m(m−1)(q − q−1)m

· [ji+1]q![µ− ji+1 +m]q!

[m]q![ji+1 −m]q![µ− ji+1]q!
F
m1,...,mi−1,mi+1,mi,mi+2,...,mN
j1,...,ji−1,ji+1−m,ji+m,ji+2...,jN

(z1, . . . , zN )
)

· vm1 ⊗ · · · ⊗ vmN

=
∑

m1,...,mN≥0,
∑
imi=l

( ji+1∑
m=0

q2(
µi
2
−(ji+m))(

µi+1
2
−(ji+1−m))+ 1

2
m(m−1)(q − q−1)m

· [ji+1]q![µ− ji+1 +m]q!

[m]q![ji+1 −m]q![µ− ji+1]q!

· Fm1,...,mi−1,mi+1,mi,mi+2,...,mN
j1,...,ji−1,ji+1−m,ji+m,ji+2...,jN

(z1, . . . , zi−1, zi+1, zi, zi+2, . . . , zN )
)

· vm1 ⊗ · · · ⊗ vmi−1 ⊗ vmi+1 ⊗ vmi ⊗ vmi+2 ⊗ · · · ⊗ vmN

=
∑

m1,...,mN≥0,
∑
imi=l

( ji+1∑
m=0

q2(
µi
2
−(ji+m))(

µi+1
2
−(ji+1−m))+ 1

2
m(m−1)(q − q−1)m

· [ji+1]q![µ− ji+1 +m]q!

[m]q![ji+1 −m]q![µ− ji+1]q!
F
m1,...,mi−1,mi+1,mi,mi+2,...,mN
j1,...,ji−1,ji+1−m,ji+m,ji+2...,jN

(γzi,zi+1(1))
)

· (τVd,Vd)i,i+1(vm1 ⊗ · · · ⊗ vmN )

=

ji+1∑
m=0

q2(
µi
2
−(ji+m))(

µi+1
2
−(ji+1−m))+ 1

2
m(m−1)(q − q−1)m

· [ji+1]q![µ− ji+1 +m]q!

[m]q![ji+1 −m]q![µ− ji+1]q!

· ψ0(γzi,zi+1(1))

∫
Pj1,...,ji−1,ji+1−m,ji+m,ji+2...,jN

ηγzi,zi+1 (1),lu0

=

ji+1∑
m=0

q2(
µi
2
−(ji+m))(

µi+1
2
−(ji+1−m))+ 1

2
m(m−1)(q − q−1)m

· [ji+1]q![µ− ji+1 +m]q!

[m]q![ji+1 −m]q![µ− ji+1]q!

·Ψ
(Pj1,...,ji−1,ji+1−m,ji+m,ji+2...,jN

)

l (γzi,zi+1(1)).

110



We formulate the result as follows.

Theorem 5.21. Suppose P is an admissible l-surface in the sense of propo-
sition 5.15 such that it can be written as a linear combination of families of
loops of the form Pj1,...,jN of level

∑N
i=1 ji = l. Let the associated solution of

KZ(sl2) be Ψ
(P)
l : YN → V ⊗Nd ,

Ψ
(P)
l (z) = ψ0(z)

∫
P
ηz,lu0 =

∑
j1,...,jN≥0,

∑
i ji=l

cj1,...,jNΨ
(Pj1,...,jN )

l (z),

where cj1,...,jN ∈ C. Let γzi,zi+1 : [0, 1]→ YN be a half-loop on YN exchanging
the points zi and zi+1, and let Mγzi,zi+1

be the corresponding monodromy

operator. Then the action of Mγzi,zi+1
on Ψ

(P)
l is defined by the formula

Mγzi,zi+1
Ψ

(P)
l =

∑
j1,...,jN≥0,

∑
i ji=l

cj1,...,jNMγzi,zi+1
Ψ

(Pj1,...,jN )

l ,

where

Mγzi,zi+1
Ψ

(Pj1,...,jN )

l =

ji+1∑
m=0

r̃mji,ji+1
Ψ

(Pj1,...,ji−1,ji+1−m,ji+m,ji+2...,jN
)

l

and

r̃mji,ji+1
=

[ji+1]q![µ− ji+1 +m]q!

[m]q![ji+1 −m]q![µ− ji+1]q!
(q − q−1)m

· q2(µ
2
−(ji+m))(µ

2
−(ji+1−m))+ 1

2
m(m−1),

q = e
πi
κ , and µ = d− 1 is the highest weight of the sl2-module Vd.
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6 The braid group representation of quantum sl2

In this section we will go deeper in the theory of quantum groups and con-
struct a representation of the braid group Bn from the quantum sl2. We will
see that this representation of Bn is actually equivalent to the monodromy
representation of Bn arising from the monodromy of solutions of KZ(sl2).
This is a most suprising result, relating two quite different braches of mathe-
matics. The equivalence (for any semisimple Lie algebra) was first stated by
Toshitake Kohno in 1987 [Koh87], who gave a description of the monodromy
representation of the braid group arising from the KZ-equations in terms of
quantum groups. In 1990 Vladimir Drinfeld [Dri90] established the relation
between the monodromy of KZ and the braid group representation defined
by the universal R-matrix of the associated quantum group in a more gen-
eral framework. Drinfeld accepted the prestigious Fields medal in 1990. The
equivalence of these two representations of Bn carries the name Drinfeld-
Kohno theorem, and it is proved using topological algebra e.g. in [Kas95].
We will not consider the original proof in the case of a general Lie algebra
in this thesis, but rather give an explicit relation between the monodromy of
KZ(sl2) and the braid group representation of quantum sl2.

We will first introduce the notion of R-matrices, which are one of the
tools used in constructing representations of Bn. Indeed, we will see that
any R-matrix defines a linear representation of Bn, and that special kind of
R-matrices acting on tensor products of representations of bialgebras pro-
duce representations of Bn commuting with the action of the bialgebra. For
example, the so called braided bialgebras have these kind of R-matrices.

Motivated by braided bialgebras, we will use the technique of R-matrices
to construct representations of Bn on tensor products of representations of
the extended quantum group Uq(sl2)[

√
K]. For this we will also introduce

the notion of the Drinfeld double (quantum double), which is a construction
originally invented by Drinfeld in 1986 [Dri86] in order to supply many non-
commutative, non-cocommutative Hopf algebras. The Drinfeld double is a
Hopf algebra which as a vector space is a tensor product of a Hopf algebra and
a certain subspace of its algebraic dual. For finite dimensional Hopf algebras
the Drinfeld double construction yields braided Hopf algebras. Motivated by
this, we will introduce the quantum Borel algebra Hq2 ⊂ Uq(sl2)[

√
K] and

find that the Drinfeld double associated to this Hopf algebra produces as a
quotient structure the extended quantum group Uq(sl2)[

√
K]. This enables

us to construct an R-matrix which in turn defines representations of the braid
group on tensor products of repesentations of Uq(sl2)[

√
K], found later to

be equivalent to the monodromy of KZ(sl2). We state most of the results
concerning Hopf algebras and quantum groups without proofs, which can be
found in [Kas95] and [Kyt11].
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6.1 R-matrices

We will now introduce the notion of R-matrices, which define linear represen-
tations of the braid group. Let A be a bialgebra. If R =

∑
i si⊗ ti ∈ A⊗A,

we write

R12 :=
∑
i

si ⊗ ti ⊗ 1A, R23 :=
∑
i

1A ⊗ si ⊗ ti, R13 :=
∑
i

si ⊗ 1A ⊗ ti.

Recall that for a bialgebra (A,µ,∆, η, ε) we denote the co-opposite coproduct
by ∆cop : A→ A⊗A,

∆cop = τA,A ◦∆.

Definition 6.1. Let A be a bialgebra. An invertible element R ∈ A⊗ A is
a universal R-matrix if the following conditions hold.

∆cop(a) = R∆(a)R−1 for all a ∈ A,
(∆⊗ idA)(R) = R13R23,

(idA ⊗∆)(R) = R13R12.

If A admits a universal R-matrix it is said to be braided.

If A is cocommutative, that is ∆cop = ∆, then 1A ⊗ 1A is a universal
R-matrix. Hence braided bialgebras generalise cocommutative bialgebras.

Definition 6.2. A linear automorphism Ř ∈ End(V ⊗ V ) of the second
tensor power of a vector space V is called an R-matrix if it satisfies the
Yang-Baxter equation

Ř12Ř23Ř12 = Ř23Ř12Ř23, (YBE)

where the notation Řij denotes the operator Ř acting on the i:th and j:th
tensor component of V ⊗ V ⊗ V.

The following lemma is easy to verify.

Lemma 6.3. The equation YBE is equivalent to

R12R13R23 = R23R13R12, (YBE’)

where R = τV,V ◦ Ř.

In representations, universal R-matrices give solutions to YBE. Solutions
of YBE induce representations of the braid group.

Proposition 6.4. Let V be a vector space and Ř an R-matrix. Then for
any integer n > 0 on V ⊗n there is a representation

ρŘn : Bn → Aut(V ⊗n)

of the braid group, such that ρŘn (σi) = Ři,i+1, i = 1, . . . , n− 1.
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Proof. By invertibility, Ři,i+1 ∈ Aut(V ⊗n) for every i = 1, . . . , n − 1. The
braid group relation (6) is trivial, and (7) follows from YBE.

Let A be a braided bialgebra with universal R-matrix R. Let ρV , ρW be
two representations of A on the vector spaces V and W.

The following theorem is proved in detail in [Kyt11]. The proof is a direct
computation.

Theorem 6.5. Let A be a braided bialgebra with universal R-matrix R. Let
ρV , ρW be two representations of A on the vector spaces V and W. Then

(i) the linear map

cV,W := τV,W ◦ (ρV ⊗ ρW )(R) : V ⊗W →W ⊗ V

is an isomorphism of representations, and

(ii) the linear map Ř := cV,V ∈ End(V ⊗ V ) is an R-matrix.

Moreover, the braid group action on V ⊗n defined by Ř commutes with
the action of A.

6.2 The restricted dual

For a linear map f : V →W the transpose of f is defined as the linear map
f∗ : W ∗ → V ∗ between the algebraic duals, given by

f∗(ϕ)(v) := ϕ(f(v)).

The tensor product of duals has the natural inclusion

V ∗ ⊗W ∗ ⊂ (V ⊗W )∗,

with the identification

(ψ ⊗ ϕ)(v ⊗ w) = ψ(v)ϕ(w).

We also identify C and its dual by f(1)↔ f ∈ C∗.

It can easily be shown (see [Kyt11]) that the dual A∗ of a coalgebra
(A,∆, ε) is a unital associative algebra equipped with the product

µ = ∆∗|A∗⊗A∗ : A∗ ⊗A∗ → A∗

and the unit
η = ε∗ : C→ A∗.

However, in order the dual of an algebra (A,µ, η) to be a coalgebra, one
needs to ensure that the transpose µ∗ of the product takes values not only
in the space (A⊗A)∗ but in A∗ ⊗A∗. Since this is not always the case, we
define the restricted dual as the inverse image of µ∗.
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Definition 6.6. Let (A,µ, η) be a unital associative algebra. The restricted
dual of A is the vector space

Ao := (µ∗)−1(A∗ ⊗A∗).

In [Kyt11] it is shown that in this way a coalgebra structure for Ao is
naturally defined. Moreover, for Hopf algebras we have the following; see
also [Kyt11].

Theorem 6.7. Let (A,µ,∆, η, ε, γ) be a Hopf algebra. Then the restricted
dual

(Ao,∆∗|Ao⊗Ao , µ∗|Ao , ε∗, η∗|Ao , γ∗|Ao)

is a Hopf algebra.

In [Kyt11] it is also shown that the restricted dual of an algebra A is
spanned by the representative forms of finite dimensional A-modules, which
are linear maps λi,j : A→ C defined by the rule

x.vj =

n∑
i=1

λi,j(x)vi

for all x ∈ A, where {vi}ni=1 is a basis of the associated A-module. Notice
that the representative forms satisfy

λi,j(xy) =
n∑
k=1

λi,k(x)λk,j(y),

i, j = 1, . . . , n, which follows from the fact that the action of A on an A-
module respects the product of the algebra.

6.3 The quantum Borel algebra Hq2

The quantum Borel algebra Hq2 is another tool needed for constructing R-
matrices for quantum groups. In sections 6.4 and 6.5 we present a construc-
tion of a Drinfeld double associated to Hq2 which enables us to interpret the
quantum Borel algebra Hq2 as a Hopf subalgebra of the extended quantum
group Uq(sl2)[

√
K], defined in section 6.5.

Let q ∈ C\{0}. LetHq2 be the algebra generated by the elements a, a−1, b
satisfying the relations

aa−1 = 1 = a−1a, ab = q2ba.

The collection {bman}m∈N,n∈Z is a vector space basis forHq2 , and the product
in this basis reads

bm1an1bm2an2 ≡ µ(bm1an1 ⊗ bm2an2) = q2n1m2bm1+m2an1+n2 .
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It is a direct computation, using the defining relations and the definition of
a Hopf algebra, to see that there is a unique Hopf algebra structure on Hq2

such that the coproduct is defined by

∆(a) = a⊗ a, ∆(b) = a⊗ b+ b⊗ 1,

which implies the following formulas:

∆(bman) =

m∑
k=0

qk(m−k)

[
m

k

]
q

bkam−k+n ⊗ bm−kan,

ε(bman) = δm,0,

γ(bman) = (−1)mq−m(m+1)−2nmbma−(n+m).

We will assume from now on that q is not a root of unity. ThenHq2 is nei-
ther commutative nor cocommutative, and the antipode γ is not involutive,
since γ(γ(b)) = q−2b 6= b.

In [Kyt11] representative forms associated to one and two dimensional
representations of Hq2 are computed. Some of them span a Hopf subalgebra
H ′q2 of the restricted dual Ho

q2 , isomorphic to Hq2 . It is convenient to define

for k ≥ 0 the elements h(k)
z ∈ Ho

q2 by

h(k)
z (bman) := δm,kz

n,

and denote by h(0)
z = gz. The elements h(k)

z for k = 0, 1 arise from one and
two dimensional representations of Hq2 , and those can be generalised to all
k ≥ 0.

Using the Hopf algebra relations of Hq2 , the products and coproducts of
these elements in Ho

q2 can be computed. The computations are straightfor-
ward, and the reader may consult [Kyt11] for more details. We will only
state the result.

Lemma 6.8. Define for k ≥ 0 the elements h(k)
z ∈ Ho

q2 by

h(k)
z (bman) := δm,kz

n, h(0)
z = gz.

Then for any k, l ≥ 0

h(k)
z h(l)

w ≡ ∆∗(h(k)
z ⊗ h(l)

w ) = zlqkl
[
k + l

k

]
q

h(k+l)
zw ,

µ∗(gz) = gz ⊗ gz,
µ∗(h(1)

z ) = gq2z ⊗ h(1)
z + h(1)

z ⊗ gz.

Definition 6.9. Let (A,µ,∆, η, ε, γ) be a Hopf algebra. If a nonzero element
a ∈ A satisfies ∆(a) = a ⊗ a, it is said to be grouplike. Notice that the
elements gz are grouplike in Ho

q2 .
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Lemma 6.10. Grouplike elements in A are invertible, and they form a lin-
early independent set in A. Moreover, ε(a) = 1 for any grouplike a ∈ A\{0}.

Proof. Let a ∈ A \ {0} be grouplike. By (H2’)

0 6= a = (ε⊗ idA) ◦∆(a) = (ε⊗ idA)(a⊗ a) = ε(a)a,

which implies ε(a) = 1. Similarly, by (H3)

µ(γ(a)⊗ a) = µ ◦ (γ ⊗ idA) ◦∆(a) = η ◦ ε(a) = 1A

= η ◦ ε(a) = µ ◦ (idA ⊗ γ) ◦∆(a) = µ(a⊗ γ(a)),

which implies γ(a) = a−1, and in particular a is invertible.
Let then a1, . . . , an be grouplike elements in A having a nontrivial relation

n∑
i=1

ciai = 0,

where ci 6= 0 for all i = 1, . . . , n, and suppose n ∈ N is the smallest number
such that a relation of this kind exists. By renormalising the coefficients ci
we may assume that c1 = 1 and write the relation in the form

n∑
i=2

ciai = a1.

Now

1 = ε(a1) =
n∑
i=2

ciε(ai) =
n∑
i=2

ci, and

n∑
i,j=2

cicj(ai ⊗ aj) = a1 ⊗ a1 = ∆(a1) =
n∑
i=2

ci∆(ai) =
n∑
i=2

ci(ai ⊗ ai).

Hence, there exists an index k ∈ {2, . . . , n} such that a = ak, contradicting
the minimality of n.

Proposition 6.11. Let q ∈ C \ {0}, and suppose q is not a root of unity.
Then the algebra Hq2 can be embedded to its restricted dual by an injective
morphism of Hopf algebras bman 7→ b̃mãn, where

ã = gq2 , b̃ = h
(1)
1 .

We denote the image of this embedding by H ′q2 ⊂ H
o
q2 .
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Proof. Since ã is a grouplike element, by lemma 6.10 it is invertible. The
defining relations of Hq2 as an algebra hold for ã and b̃, since

ãb̃ = gq2h
(1)
1 = q2h

(1)
q2

and

b̃ã = h
(1)
1 gq2 = h

(1)
q2
,

whence
ãb̃ = q2b̃ã.

The Hopf algebra structure of H ′q2 is uniquely determined by the relations

µ∗(ã) = ã⊗ ã,

µ∗(̃b) = ã⊗ b̃+ b̃⊗ 1̃,

where 1̃ = ε∗(1) = g1 is the unit element in Ho
q2 . Finally, the images of the

basis elements are
b̃rãs = q

1
2
r(r−1)[r]q!h

(r)
q2s
,

which are nonzero and linearly independent in Ho
q2 when q is not a root of

unity. Namely,

ãs = (gq2)s = (gq2)s−2gq2q2 = gq2s and

b̃r = (h
(1)
1 )r = (h

(1)
1 )r−2(h

(1)
1 )2 = (h

(1)
1 )r−2q1

[
2

1

]
q

h
(2)
1

=(h
(1)
1 )r−3q1[2]qq

2

[
3

1

]
q

h
(3)
1 = (h

(1)
1 )r−3q1[2]qq

2[3]qh
(3)
1

= · · · = q
∑r−1
i=1 i[r]q!h

(r)
1 = q

1
2
r(r−1)[r]q!h

(r)
1 ,

whence the action of b̃rãs on the basis elements of Hq2 is

b̃rãs(bman) = ((h
(1)
1 )r ⊗ (gq2)s)(∆(bman))

=
m∑
k=0

qk(m−k)

[
m

k

]
q

((h
(1)
1 )r ⊗ (gq2)s)(bkam−k+n ⊗ bm−kan)

=
m∑
k=0

qk(m−k)

[
m

k

]
q

q
1
2
r(r−1)[r]q!h

(r)
1 (bkam−k+n)gq2s(b

m−kan)

=
m∑
k=0

qk(m−k)+ 1
2
r(r−1)

[
m

k

]
q

[r]q!δk,rδm−k,0q
2sn

= q
1
2
r(r−1)[r]q!δm,rq

2sn = q
1
2
r(r−1)[r]q!h

(r)
q2s

(bman).

Thus the embedding bman 7→ b̃mãn is injective.
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6.4 The Drinfeld double

Let (A,µ,∆, η, ε, γ) be a Hopf algebra such that γ has an inverse γ−1. Let
B ⊂ Ao be a Hopf subalgebra, and denote the unit of Ao by 1̃. In the sequel
we will use use the Sweedler’s sigma notation for the coproduct, defined as
follows. By properties of the tensor product the coproduct ∆ : A → A ⊗ A
can for every a ∈ A be written as a linear combination of simple tensors,
that is

∆(a) =

k∑
i=1

a′i ⊗ a
′′
i , (10)

where a′i, a
′′
i ∈ A, and by coassociativity the double coproduct can be written

as

k∑
i=1

m∑
j=1

a′i ⊗
(

(a
′′
i )′j ⊗ (a

′′
i )
′′
j

)
=

k∑
i=1

a′i ⊗

 m∑
j=1

(a
′′
i )′j ⊗ (a

′′
i )
′′
j


=

k∑
i=1

a′i ⊗∆(a
′′
i ) = (idA ⊗∆)(∆(a)) = (∆⊗ idA)(∆(a)) =

k∑
i=1

∆(a′i)⊗ a
′′
i

=
k∑
i=1

 n∑
j=1

(a′i)
′
j ⊗ (a′i)

′′
j

⊗ a′′i =
k∑
i=1

n∑
j=1

(
(a′i)

′
j ⊗ (a′i)

′′
j

)
⊗ a′′i .

In such expressions the choices of the simple tensors are not unique.
Hence it is convenient to denote the coproduct of an element a ∈ A by

∆(a) :=
∑
(a)

a(1) ⊗ a(2),

where the notation represents any of the possible expressions of the form
(10). This is called the Sweedler’s sigma notation. By coassociativity the
double coproduct reads then∑

(a)

∑
(a(2))

a(1) ⊗
(
(a(2))(1) ⊗ (a(2))(2)

)
= (idA ⊗∆)(∆(a))

= (∆⊗ idA)(∆(a)) =
∑
(a)

∑
(a(1))

(
(a(1))(1) ⊗ (a(1))(2)

)
⊗ a(2).

By slight abuse of notation we write the above as

(idA ⊗∆)(∆(a)) = (∆⊗ idA)(∆(a)) :=
∑
(a)

a(1) ⊗ a(2) ⊗ a(3).

Notice also that in Ao the coproduct of an element ϕ ∈ Ao is

µ∗(ϕ) :=
∑
(ϕ)

ϕ(1) ⊗ ϕ(2).
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The following construction was originally established by Drinfeld in [Dri86].
For details the reader may also consult [Kyt11].

Theorem 6.12. Let (A,µ,∆, η, ε, γ) be a Hopf algebra such that γ has an
inverse γ−1. Let B ⊂ Ao be a Hopf subalgebra. Then the space A⊗B admits
a unique Hopf algebra structure such that

(i) The map ιA : A→ A⊗B,

ιA(a) = a⊗ 1̃

is a morphism of Hopf algebras.

(ii) The map ιB : Bcop → A⊗B,

ιB(ϕ) = 1⊗ ϕ

is a morphism of Hopf algebras.

(iii) For all a ∈ A, ϕ ∈ B

(a⊗ 1̃)(1⊗ ϕ) = a⊗ ϕ.

(iv) For all a ∈ A, ϕ ∈ B

(1⊗ ϕ)(a⊗ 1̃) =
∑
(a)

∑
(ϕ)

{ϕ(1)(a(3))}{ϕ(3)(γ
−1(a(1)))}(a(2) ⊗ ϕ(2)).

This Hopf algebra is denoted by D(A,B) and called the Drinfeld double
associated to A and B.

The proof of this theorem relies on the definition of a Hopf algebra and
the properties (i)-(iv). Most of the details can be found in [Kyt11]. We list
the Hopf algebra structure of D(A,B) following from the properties (i)-(iv).
The product reads for all a, b ∈ A, ϕ, ψ ∈ B

(a⊗ ϕ)(b⊗ ψ) =
∑
(b)

∑
(ϕ)

{ϕ(1)(a(3))}{ϕ(3)(γ
−1(a(1)))}(ab(2) ⊗ ϕ(2)ψ),

and the unit is
ηD(1) = 1⊗ 1̃;

the coproduct reads for all a ∈ A, ϕ ∈ B

∆D(a⊗ ϕ) =
∑
(a)

∑
(ϕ)

(a(1) ⊗ ϕ(2))⊗ (a(2) ⊗ ϕ(1)),

and the counit is
εD(a⊗ ϕ) = ε(a)ϕ(1).

The antipode of D(A,B) has the following expression, for a ∈ A, ϕ ∈ B,

γD(a⊗ ϕ) =
∑
(a)

∑
(ϕ)

{ϕ(1)(γ
−1(a(3)))}{ϕ(3)(a(1))}(γ(a(2))⊗ (γ∗)−1(ϕ(2))).
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Example 6.13. When A is finite dimensional, it can be shown that the
antipode is invertible. The restricted dual equals the algebraic dual of A,
that is, Ao = A∗. The Drinfeld double associated to A and A∗ is usually
denoted simply by D(A).

Example 6.14. When q ∈ C \ {0} is not a root of unity, the antipode of
the Hopf algebra Hq2 is invertible, with the inverse given by

γ−1(bman) = (−1)mq−m(m−1)−2mnbma−(m+n).

This is seen by direct computation. Hence, the Drinfeld double D(Hq2 , B)
associated to Hq2 and any Hopf subalgebra B ⊂ Ho

q2 is well defined.

For finite dimensional Hopf algebras, the Drinfeld doubles are always
braided. The proof can be found in [Kyt11].

Theorem 6.15. Let A be a finite dimensional Hopf algebra and {ei}ni=1 and
{δi}ni=1 the basis and dual basis of A and A∗, respectively. Then D(A) is
braided with universal R-matrix

R =
n∑
i=1

(ei ⊗ 1̃)⊗ (1⊗ δi).

However, in the infinite dimensional case we cannot use the bases to define
a universal R-matrix as an infinite sum. Hence finding a universal R-matrix
is quite a problematic task. Nevertheless, in some special cases R-matrices,
that is solutions of YBE, associated to finite dimensional representations of
the Drinfeld double can be found - and these yield representations of the
braid group, commuting with the action of the Drinfeld double.

6.5 The extended quantum group Uq(sl2)[
√
K]

We want to construct an R-matrix associated to representations of the ex-
tended quantum group Uq(sl2)[

√
K], which can be interpreted as a quotient

of a Drinfeld double. In this section we assume that q is a nonzero complex
number which is not a root of unity. Then by example 6.14 the quantum
Borel Hopf algebra Hq2 has a well defined Drinfeld double associated to the
Hopf subalgebra

H
′′

q2 := H ′q2 [
√
ã] ⊂ Ho

q2

of Ho
q2 generated by the elements

√
ã := gq, b̃ = h

(1)
1 .

Denote the Drinfeld double by

Dq2 := D(Hq2 , H
′′

q2).
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By definition both Hq2 and H ′′q2 are embedded to Dq2 . Denote the embedded
generators by

α := a⊗ 1̃, β := b⊗ 1̃,
√
α̃ := 1⊗

√
ã, β̃ := 1⊗ b̃.

We also denote naturally α̃ = (
√
α̃)2. By the properties (i) − (iii) of the

Drinfeld double Dq2 has a vector space basis

{βmαnβ̃m′(
√
α̃)n

′}m,m′∈N∪{0},n,n′∈Z.

By direct computation one can convince oneself that the following rela-
tions hold in Dq2 . For details one may also consult [Kyt11], where a similar
Drinfeld double construction is made for the pair Hq2 , H

′
q2 .

Proposition 6.16. The Hopf algebra Dq2 is as an algebra generated by the
elements α, α−1, β,

√
α̃, (
√
α̃)−1, β̃ with the relations

αα−1 = 1 = α−1α,
√
α̃(
√
α̃)−1 = 1 = (

√
α̃)−1

√
α̃,

αβ = q2βα,
√
α̃β̃ = qβ̃

√
α̃,

αβ̃ = q−2β̃α,
√
α̃β = q−1β

√
α̃,

α
√
α̃ =
√
α̃α, β̃β − ββ̃ = α− α̃.

The Hopf algebra structure on Dq2 is uniquely determined by the values of
the following coproduct.

∆(α) = α⊗ α, ∆(β) = α⊗ β + β ⊗ 1

∆(
√
α̃) =

√
α̃⊗
√
α̃, ∆(β̃) = β̃ ⊗ α̃+ 1⊗ β̃.

We can define the extended quantum group Uq(sl2)[
√
K] analogously to

the definition 4.8 of Uq(sl2).

Definition 6.17. The extended quantum group Uq(sl2)[
√
K] is the algebra

generated by the elements E,F,
√
K, (
√
K)−1 satisfying the relations

√
K(
√
K)−1 = 1 = (

√
K)−1

√
K,

√
KE(

√
K)−1 = qE,

EF − FE =
1

q − q−1
(K −K−1),

√
KF
√
K
−1

= q−1F,

where we denote K = (
√
K)2.

Moreover, similarly as for the quantum enveloping algebra Uq(sl2) we
obtain a Hopf algebra structure for Uq(sl2)[

√
K]. The proof of the following

lemma is analogous to the result for Uq(sl2).
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Lemma 6.18. Uq(sl2)[
√
K] admits a unique Hopf algebra structure deter-

mined by the coproduct

∆(
√
K) =

√
K⊗
√
K, ∆(E) = E⊗K+1⊗E, ∆(F ) = K−1⊗F+F⊗1.

The Hopf algebra structure is the following.

ε(
√
K) = 1, ε(E) = 0 = ε(F ),

γ(
√
K) = (

√
K)−1, γ(E) = −EK−1, γ(F ) = −KF.

It turns out that the Hopf algebra Uq(sl2)[
√
K] can be interpreted as

a quotient structure of the Drinfeld double Dq2 . Hence, by property (i) of
the Drinfeld double, the quantum Borel algebra Hq2 can be interpreted as
a subalgebra of Uq(sl2)[

√
K]. The following lemma can be proved by direct

computation similarly as in [Kyt11].

Lemma 6.19. The element αα̃ is a grouplike central element in Dq2 , and
the two sided ideal generated by αα̃− 1 is a Hopf ideal.

Thus the quotient Hopf algebra Dq2/(αα̃− 1) is well defined. Using the
notations

√
K,E and F for the equivalence classes of

√
α̃, 1

q−1−q β̃ and β in
Dq2/(αα̃ − 1), respectively, the defining relations of Dq2/(αα̃ − 1) become
the same as the relations of Uq(sl2)[

√
K].

Proposition 6.20. When q ∈ C\{0} is not a root of unity the Hopf algebras
Uq(sl2) and Dq2/(αα̃− 1) are isomorphic, with

√
K ↔

[√
α̃
]

(
√
K)−1 ↔

[√
α̃α
]

E ↔
[

1

q−1 − q
β̃

]
F ↔ [β] .

Notice that the irreducible representations of Uq(sl2)[
√
K] can be found

by considering the irreducible representations of Dq2 , letting the element αα̃
act as the identity. We state the following result without proof, which has
the same idea as the case of sl2, with somewhat more computations. A proof
of a similar result for the pair Hq2 , H

′
q2 is presented in [Kyt11], and it applies

to the pair Hq2 , H
′′

q2 following the same lines. Fix a branch of √q ∈ C \ {0}.

Theorem 6.21. For any integer d > 0 and for any λ ∈ C\{0} and a choice
of the branch of the fourth root λ

1
4 there exists a d-dimensional irreducible

representation W λ
1
4

d of Dq2 with basis {wj}d−1
j=0 such that

α.wj = λ
1
2 q1−d+2jwj ,

β.wj = wj+1,
√
α̃.wj = λ

1
4 q

d−1
2
−jwj ,

β̃.wj = λ
1
2 [j]q[d− j]q(q−1 − q)wj−1.

There are no other finite dimensional irreducible Dq2-modules.
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For the irreducible Uq(sl2)[
√
K]-modules we obtain the following result,

identifying the element αα̃ with the identity 1⊗ 1̃ in Dq2 . For convenience we
will use the same notation for the representations of Dq2 and Uq(sl2)[

√
K].

Theorem 6.22. For any integer d > 0 and ν ∈ {±1,±i} there exists a d-
dimensional irreducible representationW ν

d of Uq(sl2)[
√
K] with basis {wj}d−1

j=0

such that
√
K.wj = νq

d−1
2
−jwj ,

F.wj = wj+1,

E.wj = ν2[j]q[d− j]qwj−1.

There are no other finite dimensional irreducible Uq(sl2)[
√
K]-modules.

The reader is invited to compare this result with the irreducible repre-
sentations of Uq(sl2) stated in theorem 4.14. Notice in particular that the
quantum enveloping algebra Uq(sl2) is a Hopf subalgebra of the extended
quantum group Uq(sl2)[

√
K], whence representations of Uq(sl2)[

√
K] yield

representations of Uq(sl2) by restriction.

6.6 Heuristics concerning the R-matrix

Suppose (A,µ,∆, η, ε, γ) is an infinite dimensional Hopf algebra such that
the antipode γ is invertible. Then by theorem 6.12 the Drinfeld double
D(A,Ao) is uniquely determined. As a vector space, D(A,Ao) = A ⊗ Ao,
with the embedded Hopf subalgebras A and Ao by

ιA : a 7→ a⊗ 1̃ and ιAo : ϕ 7→ 1⊗ ϕ,

respectively. We would like D(A,Ao) to have a universal R-matrix with a
similar expression as in the finite dimensional case,

R =
∑
i∈I

ιA(ei)⊗ ιAo(δi),

where {ei}i∈I is a basis of A and {δi}i∈I the “dual basis“ of Ao. However,
when A is infinite dimensional the index set I is infinite, and we have no
reasonable sum or dual basis above. The problem of infinite sums can be
avoided defining R in terms of representative forms of D(A,Ao).

Since A is an embedded Hopf subalgebra of D(A,Ao) we can consider
restrictions of elements ϕ ∈ D(A,Ao)o ⊂ D(A,Ao)∗ on A, defined by

ϕ|A(a) := ϕ(ιa(a))

for every a ∈ A. On the other hand, Ao is an embedded Hopf subalgebra of
D(A,Ao), whence the element ϕ|A ∈ Ao ⊂ A∗ can be taken to be an element
of D(A,Ao), defining

ϕ′ := ιAo(ϕ|A) ∈ D(A,Ao).
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Recall that in the finite dimensional case, if {ei}i∈I is a basis of A and
{δi}i∈I the dual basis of Ao = A∗ then for any ψ ∈ Ao the formula∑

i∈I
ψ(ei)δ

i = ψ

holds. If we are able to define a concept of a “dual basis“ for Ao ⊂ A∗ in
the infinite dimensional case, we would expect a similar formula to hold. In
particular,

ϕ|A =
∑
i∈I

ϕ|A(ei)δ
i,

or in D(A,Ao),

ϕ′ = ιAo(ϕ|A) =
∑
i∈I

ϕ|A(ei)ιAo(δ
i).

How would then the universalR-matrix act on representations ofD(A,Ao)?
Let V be a D(A,Ao)-module with basis {vi}d−1

i=0 and representative forms

λi,j : D(A,Ao)→ C, λi,j ∈ D(A,Ao)o ⊂ D(A,Ao)∗,

such that for every x ∈ D(A,Ao)

x.vj =
d−1∑
i=0

λi,j(x)vi.

If D(A,Ao) has a universal R-matrix of the form

R =
∑
m∈I

ιA(em)⊗ ιAo(δm)

the action of R on V ⊗ V would be of the form

R(vi ⊗ vj) =
∑
m∈I

(ιA(em)⊗ ιAo(δm)) (vi ⊗ vj)

=
∑
m∈I

d−1∑
k,l=0

(λl,i(ιA(em))λk,j(ιAo(δ
m))) (vl ⊗ vk)

=

d−1∑
k,l=0

λk,j

(∑
m∈I

λl,i|A(em)ιAo(δ
m)

)
(vl ⊗ vk)

=
d−1∑
k,l=0

λk,j(λ
′
l,i)(vl ⊗ vk).

Notice that the last expression contains only representative forms ofD(A,Ao)
and does not depend on the dimension of A. Moreover, the sum is finite
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and can thus be computed. In view of theorem 6.5 consider the operator
Ř = τV,V ◦R : V ⊗ V → V ⊗ V,

Ř(vi ⊗ vj) =

d−1∑
k,l=0

rk,li,j (vk ⊗ vl),

where
rk,li,j = λk,j(λ

′
l,i).

The following theorem is for most parts proved in [Kyt11].

Theorem 6.23. Let (A,µ,∆, η, ε, γ) be a Hopf algebra with invertible an-
tipode, and B ⊂ Ao a Hopf subalgebra. Let V be a D(A,B)-module with basis
{vi}d−1

i=0 such that the representative forms λi,j ∈ D(A,B)o satisfy

λi,j |A ∈ B.

Then the linear map Ř : V ⊗ V → V ⊗ V,

Ř(vi ⊗ vj) =
d−1∑
k,l=0

rk,li,j (vk ⊗ vl) =
d−1∑
k,l=0

λk,j(λ
′
l,i)(vk ⊗ vl),

is an R-matrix, and the braid group representation

ρŘn : Bn → Aut(V ⊗n), ρŘn (σi) = Ri,i+1,

i = 1, . . . , n− 1, n > 0, commutes with the action of D(A,B) on V ⊗n.

Remark. Recall that D(A,B) acts on V ⊗n by the (n− 1)-fold coproduct

∆(n) := (∆⊗ idD(A,B) ⊗ idD(A,B) ⊗ · · · ⊗ idD(A,B)) ◦ · · · ◦ (∆⊗ idD(A,B)) ◦∆,

with the representation

ρV ⊗n := (ρV ⊗ · · · ⊗ ρV ) ◦∆(n) : D(A,B)→ End(V ⊗n).

6.7 An R-matrix for Uq(sl2)[
√
K]

We shall construct an R-matrix for the algebra Dq2 using representative
forms of finite dimensional irreducible representations of Dq2 obtained from
theorem 6.21. We denote the unit element of Ho

q2 by 1̃ := g1, defined by

1̃(bman) = g1(bman) = δm,0.

Fix an irreducible representation W λ
1
4

d of Dq2 , with basis {wi}d−1
i=0 of the

form of theorem 6.21. We want to find the numbers λ ∈ C, d ∈ N, so that
the representative forms λi,j ∈ (Dq2)o associated to W λ

1
4

d satisfy

λi,j |Hq2 ∈ H
′′

q2 .
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Then by theorem 6.23 we obtain an R-matrix

Ř : W λ
1
4

d ⊗W λ
1
4

d →W λ
1
4

d ⊗W λ
1
4

d

yielding a braid group representation on (W λ
1
4

d )⊗n, n > 0, which moreover
commutes with the action of Dq2 .

Recall first that the representative forms λi,j ∈ (Dq2)o are defined by the
relation

x.wj =

d−1∑
i=0

λi,j(x)wi

for every x ∈ Dq2 . Consider the action of the restricted map λi,j |Hq2 on the
basis vector bman ∈ Hq2 ,

λi,j |Hq2 (bman) = λi,j(b
man ⊗ 1̃) = λi,j(β

mαn).

By definition,

d−1∑
i=0

λi,j(b
man ⊗ 1̃)wi = (bman ⊗ 1̃).wj = βmαn.wj = (

√
λ)nqn(1−d+2j)βm.wj

=

{
(
√
λ)nqn(1−d+2j)wj+m for 0 ≤ j +m < d

0 otherwise.

Hence

λi,j |Hq2 (bman) = λi,j(b
man⊗1̃) =

{
(
√
λ)nqn(1−d+2j)δi−j,m for 0 ≤ j +m < d

0 otherwise.

Using the formulas in section 6.3 we compute the action of the basis vector
b̃r
√
ã
s ∈ H ′′q2 on the basis vector bman ∈ Hq2 ,

b̃r
√
ã
s
(bman) = q

1
2
r(r−1)[r]q!h

(r)
qs (bman) = q

1
2
r(r−1)[r]q!δm,rq

ns.

Now if 0 ≤ i, j < d− 1 then

λi,j |Hq2 ∈ H
′′

q2

if and only if there exist constants Crs ∈ C such that

λi,j |Hq2 (bman) = (
√
λ)nqn(1−d+2j)δi−j,m

=
∑

r≥0,s∈Z
Crsb̃

r
√
ã
s
(bman) =

∑
r≥0,s∈Z

Crsq
1
2
r(r−1)[r]q!δm,rq

ns.

for all values of m ∈ N ∪ {0}, n ∈ Z.
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Suppose λi,j |Hq2 ∈ H
′′

q2 . Since the coefficients Crs do not depend on n,
we have λ = 1. From the above formula we also see that for r = i− j

qn(1−d+2j) = qns,

whence s = 1− d+ 2j and

Crs =
1

q
1
2
r(r−1)[r]q!

=
1

q
1
2

(i−j)(i−j−1)[i− j]q!
.

We have proved the following.

Lemma 6.24. For any integer d > 0 the representative forms λi,j ∈ (Dq2)o

associated to the irreducible representation W 1
d satisfy

λi,j |Hq2 =
b̃i−j
√
ã

1−d+2j

q
1
2

(i−j)(i−j−1)[i− j]q!
Ij≤i ∈ H

′′

q2 ,

where

Ij≤i =

{
1, for 0 ≤ i− j < d
0 otherwise.

From theorem 6.23 it follows that the formula

Ř(vi ⊗ vj) =
d−1∑
k,l=0

rk,li,j (vk ⊗ vl) =
d−1∑
k,l=0

λk,j(λ
′
l,i)(vk ⊗ vl)

defines an R-matrix Ř : W 1
d ⊗W 1

d → W 1
d ⊗W 1

d yielding for every n > 0 a
braid group representation on (W 1

d )⊗n which commutes with the action of
Dq2 . Moreover, if we identify the element αα̃ with the identity 1⊗ 1̃ in Dq2
we obtain such a R-matrix for the extended quantum group Uq(sl2)[

√
K],

acting on the Uq(sl2)[
√
K]-modules denoted also by W 1

d .

Let us compute the matrix elements of Ř. Since for 0 ≤ j −m < d

d−1∑
k=0

λk,j(1⊗ b̃m
√
ã
n
)wk = (1⊗ b̃m

√
ã
n
).wj = β̃m

√
α̃
n
.wj

=[j]q · · · [j −m+ 1]q[d− j]q · · · [d− j +m− 1]q(q
−1 − q)mqn( d−1

2
−j)wj−m

=
[j]q![d− j +m− 1]q!

[j −m]q![d− j − 1]q!
(q−1 − q)mqn( d−1

2
−j)wj−m

and

d−1∑
k=0

λk,j(1⊗ b̃m
√
ã
n
)wk = (1⊗ b̃m

√
ã
n
).wj = β̃m

√
α̃
n
.wj = 0
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otherwise, we have by definition

λk,j(1⊗ b̃m
√
ã
n
) = Im≤j

[j]q![d− j +m− 1]q!

[j −m]q![d− j − 1]q!
(q−1 − q)mqn( d−1

2
−j)δj−m,k

=
[j]q![d− k − 1]q!

[k]q![d− j − 1]q!
(q−1 − q)mqn( d−1

2
−j)δj−m,k,

and the action of the representative forms of W 1
d on H ′′q2 is

λk,j(λ
′
l,i) = λk,j(ιH′′

q2
(λl,i|Hq2 )) = λk,j

(
β̃l−i
√
α̃

1−d+2i

q
1
2

(l−i)(l−i−1)[l − i]q!
Ii≤l

)

=
Ii≤l[j]q![d− k − 1]q!

[k]q![d− j − 1]q!q
1
2

(l−i)(l−i−1)[l − i]q!
(q−1 − q)l−iq(1−d+2i)( d−1

2
−j)δi+j,k+l.

By theorem 6.23 the above expression defines an R-matrix

Ř(wi ⊗ wj) =
d−1∑
k,l=0

rk,li,j (wk ⊗ wl) with

rk,li,j =
Ii≤lδi+j,k+l[j]q![d− k − 1]q!

[k]q![d− j − 1]q![l − i]q!
(q−1 − q)l−iq2(i− d−1

2
)( d−1

2
−j)− 1

2
(l−i)(l−i−1)

for Uq(sl2)[
√
K]. The expression can be slightly simplified. Write m := l− i.

Then we have the relations

i ≤ l ⇐⇒ m = l − i ≥ 0

i, l ∈ {1, . . . , d− 1} ⇒ m = l − i ≤ d− 1

i+ j = k + l and k ≥ 0 ⇒ j −m = k ≥ 0 ⇒ m ≤ j.

It follows that the R-matrix can be written as

Ř(wi ⊗ wj) =

j∑
m=0

řmi,j(wj−m ⊗ wi+m) with

řmi,j =
[j]q![d+m− j − 1]q!

[j −m]q![d− j − 1]q![m]q!
(q−1 − q)mq2(i− d−1

2
)( d−1

2
−j)− 1

2
m(m−1).

To summarise, we state the second main result of this thesis, proved
above.

Theorem 6.25. The formula

Ř(wi ⊗ wj) =

j∑
m=0

řmi,j(wj−m ⊗ wi+m) with

řmi,j =
[j]q![d+m− j − 1]q!

[j −m]q![d− j − 1]q![m]q!
(q−1 − q)mq2(i− d−1

2
)( d−1

2
−j)− 1

2
m(m−1)
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defines an R-matrix Ř : W 1
d ⊗W 1

d →W 1
d ⊗W 1

d acting on tensor products of
irreducible Uq(sl2)[

√
K]-modules, and the braid group representation

ρŘn : Bn → Aut((W 1
d )⊗n), ρŘn (σi) = Ři,i+1,

i = 1, . . . , n−1, n > 0, commutes with the action of Uq(sl2)[
√
K] on (W 1

d )⊗n.

6.8 The equivalence of monodromy of KZ(sl2) and braiding
of quantum sl2

As already mentioned, the braid group representation defined by the R-
matrix of theorem 6.25 is equivalent to the braid group representation arising
from the monodromy of KZ(sl2). In this section we prove this fact. Notice
that the proof gives an explicit equivalence between these two representa-
tions, although we have not shown in detail that all solutions of KZ(sl2) can
be written using the non-intersecting families of loops for which the mon-
odromy action was computed in section 5.6. Recall from theorem 5.21 that
the monodromy operator corresponding to the action of the inverse of the
braid group generator σi ∈ BN is defined by the formula

Mγzi,zi+1
Ψ

(Pj1,...,jN )

l =

ji+1∑
m=0

r̃mji,ji+1
Ψ

(Pj1,...,ji−1,ji+1−m,ji+m,ji+2...,jN
)

l

with

r̃mji,ji+1
=

[ji+1]q![µ− ji+1 +m]q!

[m]q![ji+1 −m]q![µ− ji+1]q!
(q − q−1)m

· q2(µ
2
−(ji+m))(µ

2
−(ji+1−m))+ 1

2
m(m−1),

where Pj1,...,jN , with j1, . . . , jN ≥ 0,
∑N

i=1 ji = l, is the family of non-
intersecting loops with a fixed base point, as in definition 5.16, consisting of
jk loops around the point zk, k = 1, . . . , N, and Ψ

(Pj1,...,jN )

l : YN → V ⊗Nd is
a component of the solution Ψ

(P)
l : YN → V ⊗Nd ,

Ψ
(P)
l (z) = ψ0(z)

∫
P
ηz,lu0 =

∑
j1,...,jN≥0,

∑
i ji=l

cj1,...,jNΨ
(Pj1,...,jN )

l (z),

of KZ(sl2) of level l, whose integration surface P is admissible in the sense
of proposition 5.15 and can be written as a linear combination of families of
loops of the form Pj1,...,jN . The constant µ = d− 1 ∈ C is the highest weight
of the irreducible sl2-module Vd.

It turns out that we have a natural one-to-one correspondence between
the families Pj1,...,jN and the vectors wjN ⊗ · · · ⊗ wj1 ∈ (W 1

d )⊗N . This is
actually an isomorphism of Uq(sl2)-modules, as proved in [FW91], where an
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action of the quantum group on the vector space of the families Pj1,...,jN is
defined. We will now identify the elements

Pj1,...,jN ↔ wjN ⊗ · · · ⊗ wj1 ,

or more precisely, the elements

Ψ
(Pj1,...,jN )

l ↔ wjN ⊗ · · · ⊗ wj1 .

Then the monodromy action of σ−1
i reads on wj1 ⊗ · · · ⊗ wjN

Mγzi,zi+1
(wj1 ⊗ · · · ⊗ wjN ) = Mγzi,zi+1

Ψ
(Pj1,...,ji−1,ji+1,ji,ji+2...,jN

)

l

=

ji∑
m=0

r̃mji+1,jiΨ
(Pj1,...,ji−1,ji−m,ji+1+m,ji+2...,jN

)

l

=

ji∑
m=0

r̃mji+1,ji(wj1 ⊗ · · · ⊗ wji−1 ⊗ wji+1+m ⊗ wji−m ⊗ wji+2 ⊗ · · · ⊗ wjN ).

Next we show that the operator (Mγzi,zi+1
)i,i+1 : W 1

d ⊗W 1
d → W 1

d ⊗W 1
d is

the inverse of the operator Ř : W 1
d ⊗W 1

d →W 1
d ⊗W 1

d defined by the formula
of theorem 6.25

Ř(wji ⊗ wji+1) =

ji+1∑
m=0

řmji,ji+1
(wji+1−m ⊗ wji+m) with

řmji,ji+1
=

[ji+1]q![d+m− ji+1 − 1]q!

[ji+1 −m]q![d− ji+1 − 1]q![m]q!
(q−1 − q)m

· q2(ji− d−1
2

)( d−1
2
−ji+1)− 1

2
m(m−1).

We compute

(Mγzi,zi+1
)i,i+1(Ř(wji ⊗ wji+1)) =

ji+1∑
m=0

řmji,ji+1
(Mγzi,zi+1

)i,i+1(wji+1−m ⊗ wji+m)

=

ji+1∑
m=0

řmji,ji+1

ji+1−m∑
n=0

r̃nji+m,ji+1−m(wji+m+n ⊗ wji+1−m−n)

=

ji+1∑
k=0

k∑
m=0

(−1)m(q − q−1)kqm(1−k)+2k(ji+1−ji−k)+ 1
2
k(k−1)

· [ji+1]q![d− 1− ji+1 + k]q!

[ji+1 − k]q![m]q![k −m]q![d− 1− ji+1]q!
(wji+k ⊗ wji+1−k),
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where we denoted k = m+ n. Observe now that

[ji+1]q![d− 1− ji+1 + k]q!

[ji+1 − k]q![m]q![k −m]q![d− 1− ji+1]q!

=
[ji+1]q!

[ji+1 − k]q![k]q!

[k]q!

[m]q![k −m]q!

[d− 1− ji+1 + k]q!

[d− 1− ji+1]q!

=

[
ji+1

k

]
q

[
k

m

]
q

k∏
u=1

(qd−1−ji+1+u − q−d+1+ji+1−u)(q − q−1)−k

=

[
ji+1

k

]
q

[
k

m

]
q

k−1∏
u=0

(qd−ji+1+u − q−d+ji+1−u)(q − q−1)−k

and that by lemma 5.19 with β = 1 we can write

k∑
m=0

(−1)m
[
k

m

]
q

qm(1−k) = q
1
2
k(1−k)

k−1∏
s=0

(qs − q−s) = δk,0.

It follows that

(Mγzi,zi+1
)i,i+1(Ř(wji ⊗ wji+1))

=

ji+1∑
k=0

k∑
m=0

(−1)m(q − q−1)kqm(1−k)+2k(ji+1−ji−k)+ 1
2
k(k−1)

· [ji+1]q![d− 1− ji+1 + k]q!

[ji+1 − k]q![m]q![k −m]q![d− 1− ji+1]q!
(wji+k ⊗ wji+1−k)

=

ji+1∑
k=0

[
ji+1

k

]
q

q2k(ji+1−ji−k)
k−1∏
s=0

(qs − q−s)

·
k−1∏
u=0

(qd−ji+1+u − q−d+ji+1−u)(wji+k ⊗ wji+1−k) = wji ⊗ wji+1 .

Since by theorem 6.25 the operator Ř is an R-matrix, it is invertible. By
finding the left inverse of Ř we have shown the following.

Proposition 6.26. The operator (Mγzi,zi+1
)i,i+1 : W 1

d ⊗W 1
d → W 1

d ⊗W 1
d

defined by

(Mγzi,zi+1
)i,i+1(wji ⊗ wji+1) =

ji∑
m=0

r̃mji+1,ji(wji+1+m ⊗ wji−m) with

r̃mji+1,ji =
[ji]q![d− 1− ji +m]q!

[m]q![ji −m]q![d− 1− ji]q!
(q − q−1)m

· q2( d−1
2
−(ji+1+m))( d−1

2
−(ji−m))+ 1

2
m(m−1),
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is the inverse of the operator Ř : W 1
d ⊗W 1

d →W 1
d ⊗W 1

d defined by

Ř(wji ⊗ wji+1) =

ji+1∑
m=0

řmji,ji+1
(wji+1−m ⊗ wji+m) with

řmji,ji+1
=

[ji+1]q![d+m− ji+1 − 1]q!

[ji+1 −m]q![d− ji+1 − 1]q![m]q!
(q−1 − q)m

· q2(ji− d−1
2

)( d−1
2
−ji+1)− 1

2
m(m−1).

In particular, the representation

ρKZN : BN → Aut(V ⊗Nd ), σi 7→M−1
γzi,zi+1

of the braid group BN defined by the monodromy of KZ(sl2) under the iden-
tification

Ψ
(Pj1,...,jN )

l ↔ wjN ⊗ · · · ⊗ wj1
coincides with the representation

ρŘN : BN → Aut((W 1
d )⊗N ), σi 7→ Ři,i+1,

arising from the extended quantum group Uq(sl2)[
√
K].

Next we compute the action of Ř on some tensor products of irreducible
representations of Uq(sl2)[

√
K] and compare it with the monodromy repre-

sentation of the braid group associated to the corresponding KZ-equation.
We will see concretely that these two representations are equivalent.

6.9 The braid group representation on W 1
2 ⊗W 1

2

By example 4.18
W 1

2 ⊗W 1
2
∼= W 1

1 ⊕W 1
3

with the highest weight vectors

w(1) = w0 ⊗ w1 − q−1w1 ⊗ w0 ∈W 1
1 , and

w(0) = w0 ⊗ w0 ∈W 1
3 .

By theorem 6.23 the action of Ř on W 1
2 ⊗W 1

2 commutes with the action
of Uq(sl2)[

√
K], and Schur’s lemma 4.10 implies that Ř acts as a scalar on

every component of the direct sum decomposition of W 1
2 ⊗W 1

2 separately.
Indeed, using the formula

Ř(wi ⊗ wj) =

j∑
m=0

řmi,j(wj−m ⊗ wi+m) with

řmi,j =
[j]q![d+m− j − 1]q!

[j −m]q![d− j − 1]q![m]q!
(q−1 − q)mq2(i− d−1

2
)( d−1

2
−j)− 1

2
m(m−1)
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of theorem 6.25 in the dimension d = 2, we compute

Ř(w(0)) = q2(− d−1
2

)( d−1
2

)(w0 ⊗ w0) = q−
1
2w(0) and

Ř(w(1)) =

1∑
m=0

[d+m− 2]q!

[d− 2]q!
(q−1 − q)mq2(− d−1

2
)( d−1

2
−1)− 1

2
m(m−1)(w1−m ⊗ wm)

− q−1q2(1− d−1
2

)( d−1
2

)(w0 ⊗ w1)

= q
1
2 (w1 ⊗ w0) + (q−1 − q)q

1
2 (w0 ⊗ w1)− q−

1
2 (w0 ⊗ w1)

= q
1
2 (w1 ⊗ w0)− q

3
2 (w0 ⊗ w1) = −q

3
2w(1),

that is
Ř|W 1

1
= −q

3
2 idW 1

1
, Ř|W 1

3
= q−

1
2 idW 1

3
.

Recall from section 5.3.2 the braid group representation associated to the
solutions of KZ(sl2) taking values in the sl2-module

V2 ⊗ V2
∼= V1 ⊕ V3,

namely ρKZ2 : σ1 7→M−1
γ1 , where

M−1
γ1 |V1 = −q

3
2 idV1 , M−1

γ1 |V3 = q−
1
2 idV3 .

Notice that there is indeed a one-to-one correspondence between the actions
of Ř and M−1

γ1 on the direct sum components W 1
j and Vj , j ∈ {1, 3}, of the

corresponding Uq(sl2)[
√
K]- and sl2-modules, respectively. Notice also that

the value of the parameter κ ∈ C\Q determines the value of the deformation
parameter q = e

πi
κ ∈ C \ {0}, and from the fact that κ /∈ Q it follows that q

is not a root on unity.

6.10 The braid group representation on W 1
2 ⊗W 1

2 ⊗W 1
2

Studying the braid group representations of braids with more than two
strands induced by Ř, the action of Ř on the tensor products of Uq(sl2)[

√
K]-

modules has to be considered via the operators Řij acting on the i:th and
j:th tensor component. In such tensor products the operators Řij are not
necessarily diagonal in the natural basis of the direct sum decomposition,
generated by the highest weight vectors. They are, however, diagonalizable,
but not simultaneously since they do not commute.

Using proposition 4.17 (quantum Clebsch-Gordan) repeatedly we obtain
a direct sum decomposition of irreducible Uq(sl2)[

√
K]-modules for the repre-

sentationW 1
d⊗W 1

d⊗W 1
d . However, it may contain more than one irreducibles

with the same dimension. By Schur’s lemma 4.10 the operator Řij shuffles
the components of the same dimension of the direct sum. When N = 3, we
have to consider the two operators Ř12 and Ř23 corresponding to the two
braid group generators σ1, σ2 ∈ B3.
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For simplicity, we consider only the case d = 2, from which the structure
of the braid group representations

ρŘ3 : B3 → Aut((W 1
d )⊗3), ρŘn (σi) = Ři,i+1,

i = 1, 2, d > 1, can be seen. Recall that the sl2-modules

V2 ⊗ V2 ⊗ V2
∼= V4 ⊕ V2 ⊕ V2,

where the highest weight vectors are

u0 = v0 ⊗ v0 ⊗ v0

of weight 3, and two linearly independent highest weight vectors of weight
1, which by lemma 5.11 are of the form

u1 = a1v1 ⊗ v0 ⊗ v0 + a2v0 ⊗ v1 ⊗ v0 + a3v0 ⊗ v0 ⊗ v1 =

3∑
k=1

fkaku0,

where the coefficients satisfy
∑3

k=1 ak = 0. We want first to find the corre-
sponding highest weight vectors in the Uq(sl2)[

√
K]-module

W 1
2 ⊗W 1

2 ⊗W 1
2
∼= W 1

4 ⊕W 1
2 ⊕W 1

2 .

Clearly the vector of weight q3 is u′0 := w0⊗w0⊗w0, and similarly as in
the proof of lemma 5.11 there are two linearly independent vectors of weight
q, which are of the form

u′1 := q−2a1w1 ⊗ w0 ⊗ w0 + q−1a2w0 ⊗ w1 ⊗ w0 + a3w0 ⊗ w0 ⊗ w1,

where
∑3

k=1 ak = 0. This can be checked by direct computation from the
formulas that highest weight vectors must satisfy, namely

K.u′1 = qu′1 and E.u′1 = 0.

We compute the action of the R-matrix Ř on the highest weight vectors
using the formula

Ř(wi ⊗ wj) =

j∑
m=0

řmi,j(wj−m ⊗ wi+m) with

řmi,j =
[j]q![d+m− j − 1]q!

[j −m]q![d− j − 1]q![m]q!
(q−1 − q)mq2(i− d−1

2
)( d−1

2
−j)− 1

2
m(m−1)
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of theorem 6.25 in the dimension d = 2. First,

Ř(w0 ⊗ w0) = q2(− d−1
2

)( d−1
2

)(w0 ⊗ w0) = q−
1
2 (w0 ⊗ w0),

Ř(w0 ⊗ w1) =
1∑

m=0

[d+m− 2]q!

[d− 2]q!
(q−1 − q)m

·q2(− d−1
2

)( d−1
2
−1)− 1

2
m(m−1)(w1−m ⊗ wm)

= q
1
2 (w1 ⊗ w0) + (q−1 − q)q

1
2 (w0 ⊗ w1)

= q
1
2 ((q−1 − q)w0 ⊗ w1 + w1 ⊗ w0),

Ř(w1 ⊗ w0) = q2(1− d−1
2

)( d−1
2

)(w0 ⊗ w1) = q
1
2 (w0 ⊗ w1).

Using these, we obtain for i = 1, 2

Ři,i+1u
′
0 = q−

1
2u′0,

Ř12u
′
1 = q−

1
2u′1 + q

1
2 (τW 1

2 ,W
1
2
)12(u′1)

−q
1
2 (q−3a1w1 ⊗ w0 ⊗ w0 + a2w0 ⊗ w1 ⊗ w0 + a3w0 ⊗ w0 ⊗ w1),

Ř23u
′
1 = q−

1
2u′1 + q

1
2 (τW 1

2 ,W
1
2
)23(u′1)

−q
1
2 (q−2a1w1 ⊗ w0 ⊗ w0 + q−2a2w0 ⊗ w1 ⊗ w0 + qa3w0 ⊗ w0 ⊗ w1).

We will consider the operator Ř12, which represents the braid group gener-
ator σ1 ∈ B3; the operator Ř23 is similar.

Choose the coefficients a1, a2, a3 ∈ C so that the Uq(sl2)[
√
K]-module

W 1
2 ⊗W 1

2 ⊗W 1
2
∼= W 1

4 ⊕W 1
2 ⊕W 1

2 has the basis

{u′0, F.u′0, F 2.u′0, F
3.u′0; u′1, F.u

′
1; û′1, F.û

′
1},

that is a natural basis of the direct sum decomposition, where

u′1 := w1 ⊗ w0 ⊗ w0 − qw0 ⊗ w1 ⊗ w0, i.e. a1 = q2, a2 = −q2, a3 = 0,

û′1 := w0 ⊗ w1 ⊗ w0 − qw0 ⊗ w0 ⊗ w1, i.e. a1 = 0 , a2 = q, a3 = −1.

The action of the tensor flip in the first two tensor components is

(τW 1
2 ,W

1
2
)12(u′1) = w0 ⊗ w1 ⊗ w0 − qw1 ⊗ w0 ⊗ w0,

(τW 1
2 ,W

1
2
)12(û′1) = w1 ⊗ w0 ⊗ w0 − qw0 ⊗ w0 ⊗ w1,
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and we obtain

Ř12(u′1) = q−
1
2u′1 + q

1
2 (w0 ⊗ w1 ⊗ w0 − qw1 ⊗ w0 ⊗ w0)

− q
1
2 (q−1w1 ⊗ w0 ⊗ w0 − q2w0 ⊗ w1 ⊗ w0)

= (q−
1
2 − q

3
2 − q−

1
2 )w1 ⊗ w0 ⊗ w0 + (−q

1
2 + q

1
2 + q

5
2 )w0 ⊗ w1 ⊗ w0

= − q
3
2 (w1 ⊗ w0 ⊗ w0 − qw0 ⊗ w1 ⊗ w0) = −q

3
2u′1,

Ř12(û′1) = q−
1
2 û′1 + q

1
2 (w1 ⊗ w0 ⊗ w0 − qw0 ⊗ w0 ⊗ w1)

− q
1
2 (qw0 ⊗ w1 ⊗ w0 − w0 ⊗ w0 ⊗ w1) = q

1
2w1 ⊗ w0 ⊗ w0

+ (q−
1
2 − q

3
2 )w0 ⊗ w1 ⊗ w0 + (−q−

1
2 − q

3
2 + q

3
2 )w0 ⊗ w0 ⊗ w1

= q
1
2u′1 + q−

1
2 û′1

The matrix of Ř12 in the above basis of the direct sum decomposition of the
Uq(sl2)[

√
K]-module W 1

4 ⊕W 1
2 ⊕W 1

2 is

Ř12 =



q−
1
2 0 0 0 0 0 0 0

0 q−
1
2 0 0 0 0 0 0

0 0 q−
1
2 0 0 0 0 0

0 0 0 q−
1
2 0 0 0 0

0 0 0 0 −q
3
2 0 q

1
2 0

0 0 0 0 0 −q−
3
2 0 q

1
2

0 0 0 0 0 0 q−
1
2 0

0 0 0 0 0 0 0 q−
1
2


Recall the braid group representation associated to the solutions of KZ(sl2)

taking values in the sl2-module V2⊗V2⊗V2, computed in section 5.6.2. With
a suitable choice of basis we obtained exactly the same matrix representation
of the braid group generator σ1 ∈ B3. The matrix representation of the other
generator σ2 can be computed similarly. Actually, with this choice of basis
also the matrix representation of σ2 will be the same as in section 5.6.2.
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7 Conclusion

In this thesis we constructed solutions Ψ
(P)
l : YN → Vd1 ⊗ · · · ⊗ VdN ,

Ψ
(P)
l (z) = ψ0(z)

∫
P
ηz,lu0, with

ψ0(z) =
∏

1≤i<j≤N
(zi − zj)

µiµj
2κ and

ηz,l =
∏

1≤i<j≤l
(wi − wj)

2
κ

∏
j,k

(wj − zk)−
µk
κ

l∏
i=1

N∑
k=1

fk
wi − zk

dw,

of the KZ-equations in the case of the (semi)simple Lie algebra sl2 in integral
form (proposition 5.15). Moreover, we saw that for d1 = · · · = dN = d the
monodromy of KZ(sl2) indeed defines a linear representation of the whole
braid group BN , although the fundamental group of the domain

YN = {(z1, . . . , zN ) ∈ CN} \
⋃
i<j

{zi = zj}

where the equations are analytically defined is only a subgroup of BN . This
was achieved by incorporating an action of the symmetric group SN on the
trivial vector bundle YN × V ⊗Nd over the manifold YN .

We also showed that the monodromy action of KZ(sl2) on any sl2-module
V ⊗N commutes with the action of the universal enveloping algebra U(sl2).
This enabled us by Schur’s lemma 4.10 and semisimplicity of sl2 to concen-
trate on the monodromy of the solutions of KZ(sl2) (pointwise) proportional
to highest weight vectors in a tensor product V ⊗Nd of irreducible sl2-modules.

We also found an expression of an R-matrix (theorem 6.25)

Ř(wi ⊗ wj) =

j∑
m=0

řmi,j(wj−m ⊗ wi+m) with

řmi,j =
[j]q![d+m− j − 1]q!

[j −m]q![d− j − 1]q![m]q!
(q−1 − q)mq2(i− d−1

2
)( d−1

2
−j)− 1

2
m(m−1)

for the extended quantum group Uq(sl2)[
√
K] and saw that this operator

defines for any n > 0 a linear representation of the braid group Bn on the
tensor product (W 1

d )⊗n of irreducible Uq(sl2)[
√
K]-modules, commuting with

the action of the extended quantum group Uq(sl2)[
√
K]. By Schur’s lemma

4.10 and semisimplicity of Uq(sl2)[
√
K] we were again able to concentrate on

the action on tensor products of irreducibles.
Especially, we showed concretely that the monodromy of KZ(sl2) (theo-

rem 5.21) indeed coincides with the braid group representation induced by
the R-matrix of Uq(sl2)[

√
K], via a suitable correspondence of solutions of
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KZ(sl2) and vectors in (W 1
d )⊗n. We left some details unproven, mostly be-

cause the proofs would require more theory of homology and cohomology
groups and local systems that would have been possible to cover in this the-
sis. We also left out some long and technical proofs since they would not
have been very illustrating or useful for our purposes. For more details on
this subject we refer to [EFK98] and [FW91].

7.1 The Drinfeld-Kohno theorem

To compare our results with the Drinfeld-Kohno theorem (DK), we will
briefly present the statement of the DK-theorem and discuss differences
between our concrete method and the topological method of the proof of
DK. The Drinfeld-Kohno theorem establishes the link between the two braid
group representations arising on the one hand from “universal“ R-matrices
associated to the quantum enveloping algebras Uh(g) of semisimple Lie alge-
bras, and on the other hand from solutions of the KZ-equations associated
to the same semisimple Lie algebra g. It is important to notice that in the
formulation of the DK-theorem the deformation parameter h of the quantum
group has a different meaning than the parameter q ∈ C \ {0,±1} we have
used in this thesis. Namely, h is considered as a variable of formal power
series, whereas the parameter q is just a complex number. The DK-theorem
can be formulated as follows.

Let C[[h]] be the algebra of formal power series in an indeterminate h
with coefficients in C. Define the topological module V [[h]] as the set of all
power series ∑

n≥0

vnh
n,

vn ∈ V, with the obvious structure as a C[[h]]-module. The vector space
V [[h]] is equipped with the h-adic topology, that is, the open neighbourhoods
of zero have a basis {hnV [[h]]}n≥0, and translations are continuous. The
reader can find more information about topological modules in [Kas95].

The quantum enveloping algebra Uh(g) of a semisimple Lie algebra g
can be defined as a topological algebra over C[[h]], and it has a “universal“
R-matrix Rh in the sense of braided quasi-bialgebras (see [Kas95]) which
generalise the notion of braided bialgebras, but the coproduct is not always
coassociative. The R-matrix Rh induces a C[[h]]-linear representation

ρRhn : Bn → AutC[[h]](V
⊗n[[h]])

as before, satisfying ρRhn (σi) = (Rh)i,i+1, i = 1, . . . , n−1. On the other hand,
the monodromy of solutions of the KZ-equations taking values in a g-module
W = V ⊗n yields a braid group representation

ρKZn : Bn → Aut(V ⊗n).
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Writing h := 2πi
κ , where κ is the parameter in the KZ-equations, we can

state the Drinfeld-Kohno theorem.

Theorem 7.1. (Drinfeld-Kohno) The braid group representations ρKZn and
ρRhn are equivalent for any n > 1 and any finite dimensional g-module V.
That is, there exists a C[[h]]-linear automorphism π ∈ AutC[[h]](V

⊗n[[h]])
such that

ρKZn (σi) = π ◦ (Rh)i,i+1 ◦ π−1

for all i = 1, . . . , n− 1.

The proof of the Drinfeld-Kohno theorem is long and tedious, and we
leave it to the reader. It is presented using topological modules and braided
quasi-bialgebras in [Kas95] and [Mee05], for instance. The DK-theorem was
originally proved in [Dri90], and the relation between the two braid group
representations was first established by Toshitake Kohno in [Koh87].

Notice that considering topological modules requires that the deforma-
tion parameter h = 2πi

κ is near one in order the formal power series to con-
verge. Hence the proof of the DK-theorem is valid only for such h. However,
the topological method yields, at least in a topological sense, a “universal“
R-matrix for the quantum enveloping algebra Uh(g). As we have seen in this
thesis, an expression of an R-matrix inducing braid group representations
can be obtained for all values of the deformation parameter q = e

πi
κ which

are not roots of unity. Moreover, we found an explicit relation between the
monodromy of KZ(sl2) and the R-matrix, based on the fact that solutions
of KZ(sl2) can be written in integral form. In particular, using the quan-
tum R-matrix we are able to compute also monodromy of other systems of
linear partial differential equations whose solutions have similar integral ex-
pressions. Systems of PDE’s of this kind arise for instance in the theory of
Schramm-Loewner evolutions.
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